美文网首页
2019-06-09

2019-06-09

作者: 243李楠 | 来源:发表于2019-06-09 20:21 被阅读0次

    本课是“平面向量”的起始课,具有“统领全局”的作用.因此,本课的目标应体现出这一地位。具体有如下三个方面:

    (1)形成平面向量的概念,特别是要让学生体会“向量集形与数于一身”的特征;

    (2)让学生体会用联系的观点、类比的方法研究向量(主要是联系数及其运算、直线(段)的平行和共线等);

    (3)通过类比“数及其运算”而获得研究的内容与方法的启发,再一次体会研究一类新的数学问题的基本套路(思路).

    如果从更深层次考虑,上述目标更本质的是“数学育人”.数学课堂应始终把育人目标放在首位,当然要将它融入知识的教学中.而作为“起始”,本课的教学必须要有“交代问题背景、引入基本概念、构建研究蓝图”的大气.要让学生感受到数学概念产生、发展的基本过程,体会到研究数学问题的基本套路,进而提高提出问题、研究问题的能力,这才算充分挖掘了本课内容的育人资源,才算体现了向量概念的教学价值.

    让学生参与概念本质特征的概括活动是使概念课生动活泼、优质高效的关键。这就要求我们一方面充分利用新旧知识蕴含的矛盾,激发认知冲突,把学生卷入其中;另一方面要让学生有参与的时间与机会,特别是有思维的实质性参与.

    概念的形成过程充满矛盾冲突,这是激发学生学习兴趣与热情的内在条件.比如,考察司空见惯的“量”,有的“只有大小没有方向”,有的“既有大小又有方向”,在比较中就产生了区别的需要,这就是向量概念的生长点.与人出生后要起名字一样,我们要给新的数学对象命名,并且要与它的本质相吻合,要区别于其他概念,“方向”就成了区别的标准,没有“方向”的叫数量,有“方向”的叫向量,概念的产生自然而然.

    概念抽象需要典型实例.谁来找例子?教师自作自画,自己举例、概括,自己给定义,就可能枯燥乏味.比如,告诉学生什么叫平行向量、相等向量、相反向量等,学生被动听,没有参与机会,不仅枯燥乏味,而且会使学生理解不透.如果让学生举例,要求尽量举不同的例,就会迫使他们开动脑子,就有可能举出不同的、有趣的例,就会百花齐放.这样,生动活泼的场面自然形成,而且在举例过程中,有独立思考、合作交流,甚至有争辩,这就形成了促进概念理解的机制.让学生举例可以促进学生思维的深度参与,因为好例子需要以理解概念的本质属性为基础.实际上,概念教学中的“参与”,其关键是参与从典型实例中概括概念本质特征的活动.

    事实上,由于数学概念的高度抽象性,对任何一个貌似简单的概念,学生往往都要费很大周折才能理解。许多教师对此不能保持高度警觉,常常认为自己容易的学生也然,没有意识到自己的“容易”是经历了千辛万苦、长期积累才得到的。这种心理导致了师生交流的许多障碍,是造成教师不是从学生的角度出发,针对学生的理解困难展开教学的主要原因。因此,教师要对这种心理保持高度警惕,努力从学生的认知水平出发,保证学生参与概念本质特征的概括活动,确保学生有自己想明白的机会和时间,这是非常要紧的.

    3.概念教学要使学生自然地、水到渠成地实现“概念的形成”

    从课堂教学的要求看,概念教学的自然和水到渠成应包括两方面:一是知识的逻辑顺序自然;二是学生心理逻辑的自然,主要是思维过程的自然.“自然的概念教学过程”是上述两方面的融合.因此,向量概念的教学中,我们注意了从宏观上为学生勾勒研究框架和总体思路,使学生能“抬头看路”,知道往哪里走,这是起始课的重要任务;微观上,引导学生通过类比,有序地给出向量的定义(区别于“只有大小没有方向的量”)、讨论向量的表示(重点是几何表示)、定义特殊的向量、研究特殊的关系(特别是相等向量).在引导学生展开对向量及其相关概念的学习过程中,主要强调了“让学生参与到定义概念的活动中来”,不轻易打断学生的思维和活动,恰时恰点地“以问题引导学习”,在“追问(质疑)——反思”的过程中深化概念的理解,使“概念的理解”成为学生自己主动思维的结果.

    4.“创造性地使用教材”的前提是深刻理解教材

    本次课改提出“用教材教”“创造性地使用教材”的理念,这对教师理解和处理教材提出了更高要求.我们认为,深刻理解教材的编写意图是“创造性地使用教材”的前提.

    “平行向量”、“共线向量”等概念,教材是这样呈现的:先介绍概念,然后以一个例子作为概念的应用与巩固;“相反向量”在向量的减法运算中给出.教科书按知识的逻辑顺序呈现,无疑是正确的.如果按教材顺序组织教学,一定能顺利完成任务,学生也会掌握得不错.但这是“教师告诉,提醒注意,练习巩固”的办法,学生的主动思维无法调动.因此我们根据教材的基本思路,先让学生研究问题4,目的是给学生参与概括概念本质特征的机会,实实在在地经历概念的形成过程.观察过程中,必然要利用向量的定义,要从“方向”和“大小”两个方面展开思考.于是,平行向量(共线向量)就很容易被概括出来;相等向量、相反向量等概念的产生也比较自然.教师适时介入,强化本质特征、规范概念表达,与学生一起完成概念的定义.

    相关文章

      网友评论

          本文标题:2019-06-09

          本文链接:https://www.haomeiwen.com/subject/oaznxctx.html