美文网首页
《Python 核心技术与实战》 学习笔记 Day19 揭秘 P

《Python 核心技术与实战》 学习笔记 Day19 揭秘 P

作者: _相信自己_ | 来源:发表于2023-02-02 23:19 被阅读0次

从一个爬虫说起

爬虫,就是互联网的蜘蛛,在搜索引擎诞生之时,与其一同来到世上。爬虫每秒钟都会爬取大量的网页,提取关键信息后存储在数据库中,以便日后分析。爬虫有非常简单的 Python 十行代码实现,也有 Google 那样的全球分布式爬虫的上百万行代码,分布在内部上万台服务器上,对全世界的信息进行嗅探。
简单的爬虫例子:


import time

def crawl_page(url):
    print('crawling {}'.format(url))
    sleep_time = int(url.split('_')[-1])
    time.sleep(sleep_time)
    print('OK {}'.format(url))

def main(urls):
    for url in urls:
        crawl_page(url)

%time main(['url_1', 'url_2', 'url_3', 'url_4'])

########## 输出 ##########

crawling url_1
OK url_1
crawling url_2
OK url_2
crawling url_3
OK url_3
crawling url_4
OK url_4
Wall time: 10 s

一个很简单的思路出现了——我们这种爬取操作,完全可以并发化。我们就来看看使用协程怎么写。


import asyncio

async def crawl_page(url):
    print('crawling {}'.format(url))
    sleep_time = int(url.split('_')[-1])
    await asyncio.sleep(sleep_time)
    print('OK {}'.format(url))

async def main(urls):
    for url in urls:
        await crawl_page(url)

%time asyncio.run(main(['url_1', 'url_2', 'url_3', 'url_4']))

########## 输出 ##########

crawling url_1
OK url_1
crawling url_2
OK url_2
crawling url_3
OK url_3
crawling url_4
OK url_4
Wall time: 10 s

实战:豆瓣近日推荐电影爬虫

任务描述:https://movie.douban.com/cinema/later/beijing/ 这个页面描述了北京最近上映的电影,你能否通过 Python 得到这些电影的名称、上映时间和海报呢?这个页面的海报是缩小版的,我希望你能从具体的电影描述页面中抓取到海报。


import requests
from bs4 import BeautifulSoup

def main():
    url = "https://movie.douban.com/cinema/later/beijing/"
    init_page = requests.get(url).content
    init_soup = BeautifulSoup(init_page, 'lxml')

    all_movies = init_soup.find('div', id="showing-soon")
    for each_movie in all_movies.find_all('div', class_="item"):
        all_a_tag = each_movie.find_all('a')
        all_li_tag = each_movie.find_all('li')

        movie_name = all_a_tag[1].text
        url_to_fetch = all_a_tag[1]['href']
        movie_date = all_li_tag[0].text

        response_item = requests.get(url_to_fetch).content
        soup_item = BeautifulSoup(response_item, 'lxml')
        img_tag = soup_item.find('img')

        print('{} {} {}'.format(movie_name, movie_date, img_tag['src']))

%time main()

########## 输出 ##########

阿拉丁 05月24日 https://img3.doubanio.com/view/photo/s_ratio_poster/public/p2553992741.jpg
龙珠超:布罗利 05月24日 https://img3.doubanio.com/view/photo/s_ratio_poster/public/p2557371503.jpg
五月天人生无限公司 05月24日 https://img3.doubanio.com/view/photo/s_ratio_poster/public/p2554324453.jpg
... ...
直播攻略 06月04日 https://img3.doubanio.com/view/photo/s_ratio_poster/public/p2555957974.jpg
Wall time: 56.6 s
import asyncio
import aiohttp

from bs4 import BeautifulSoup

async def fetch_content(url):
    async with aiohttp.ClientSession(
        headers=header, connector=aiohttp.TCPConnector(ssl=False)
    ) as session:
        async with session.get(url) as response:
            return await response.text()

async def main():
    url = "https://movie.douban.com/cinema/later/beijing/"
    init_page = await fetch_content(url)
    init_soup = BeautifulSoup(init_page, 'lxml')

    movie_names, urls_to_fetch, movie_dates = [], [], []

    all_movies = init_soup.find('div', id="showing-soon")
    for each_movie in all_movies.find_all('div', class_="item"):
        all_a_tag = each_movie.find_all('a')
        all_li_tag = each_movie.find_all('li')

        movie_names.append(all_a_tag[1].text)
        urls_to_fetch.append(all_a_tag[1]['href'])
        movie_dates.append(all_li_tag[0].text)

    tasks = [fetch_content(url) for url in urls_to_fetch]
    pages = await asyncio.gather(*tasks)

    for movie_name, movie_date, page in zip(movie_names, movie_dates, pages):
        soup_item = BeautifulSoup(page, 'lxml')
        img_tag = soup_item.find('img')

        print('{} {} {}'.format(movie_name, movie_date, img_tag['src']))

%time asyncio.run(main())

########## 输出 ##########

阿拉丁 05月24日 https://img3.doubanio.com/view/photo/s_ratio_poster/public/p2553992741.jpg
龙珠超:布罗利 05月24日 https://img3.doubanio.com/view/photo/s_ratio_poster/public/p2557371503.jpg
五月天人生无限公司 05月24日 https://img3.doubanio.com/view/photo/s_ratio_poster/public/p2554324453.jpg
... ...
直播攻略 06月04日 https://img3.doubanio.com/view/photo/s_ratio_poster/public/p2555957974.jpg
Wall time: 4.98 s

总结

  • 协程和多线程的区别,主要在于两点,一是协程为单线程;二是协程由用户决定,在哪些地方交出控制权,切换到下一个任务。
  • 协程的写法更加简洁清晰,把 async / await 语法和 create_task 结合来用,对于中小级别的并发需求已经毫无压力。
  • 写协程程序的时候,你的脑海中要有清晰的事件循环概念,知道程序在什么时候需要暂停、等待 I/O,什么时候需要一并执行到底。

相关文章

  • Python核心技术与实战笔记目录

    参考资料: 极客时间 Python核心技术与实战学习 Python核心技术与实战(极客时间)链接:http://g...

  • Python对象的比较和拷贝

    李文轩 2019-08-17声明:这是本人学习极客时间的Python核心技术与实战的笔记,有侵权请联系我。 ' =...

  • 唐宇迪 python numpy&pandas

    概览 疑问 笔记 B站 Python数据分析与机器学习实战已完结 2.26开始更新 P9 == 判断ndarray...

  • Python03 字符串

    以下主要是听极客时间:Python核心技术与实战时做的笔记 字符串是python一种常见的数据类型,比如函数的注释...

  • Python02 数据结构:字典和集合

    以下主要是听极客时间:Python核心技术与实战时做的笔记 对于每一门编程语言,数据结构都是重中之重。对于Pyth...

  • Python01 数据结构:列表和元组

    以下主要是听极客时间:Python核心技术与实战时做的笔记 对于每一门编程语言,数据结构都是重中之重。对于Pyth...

  • 极客时间

    我的已购专栏。 左耳听风 黄勇的OKR实战笔记 Kafka核心技术与实战 OpenResty从入门到实战 Java...

  • Redis线程那些事

    本文作为学习笔记,文章内容来自“极客时间”专栏《Redis核心技术与实战》,如有侵权,请告知,必即时删除。 Red...

  • 针对Redis内存碎片以及缓冲区溢出的优化

    本文作为学习笔记,文章内容来自“极客时间”专栏《Redis核心技术与实战》,如有侵权,请告知,必即时删除。 1、内...

  • Redis缓存淘汰策略

    本文作为学习笔记,文章内容来自“极客时间”专栏《Redis核心技术与实战》,如有侵权,请告知,必即时删除。 1、淘...

网友评论

      本文标题:《Python 核心技术与实战》 学习笔记 Day19 揭秘 P

      本文链接:https://www.haomeiwen.com/subject/odvghdtx.html