美文网首页
PyTorch Convolution Layers

PyTorch Convolution Layers

作者: DejavuMoments | 来源:发表于2019-05-11 23:09 被阅读0次

1 \cdot 1 卷积核的作用是什么?

1x1 卷积核在 Network in Network 中被提出了,主要作用有:
1.压缩/提升 维度
2.相当于全联接网络,经过 ReLU 层,可以增加非线性

为什么要进行 Padding 操作?

1.解决多次卷积之后,Feature Map 尺寸缩小的问题
2.边缘信息丢失(卷积核 扫)

Padding 一般有两种选择:Valid 和 Same

ResNet

Inception

Conv1d

torch.nn.Conv1d(
    in_channels,
    out_channels,
    kernel_size,
    stride=1,
    padding=0,
    dilation=1,
    groups=1,
    bias=True,
    padding_mode='zeros'
)

Applies a 1D convolution over an input signal composed of several input planes.

In the simplest case, the output value of the layer with input size

where ⋆ is the valid cross-correlation operator, N is a batch size, C denotes a number of channels, L is a length of signal sequence.

这里 32 为batch_size,50 为句子最大长度,256 为词向量

再输入一维卷积的时候,需要将 32*50*256 变换为 32*256*50,因为一维卷积是在最后维度上扫的,最后 out 的大小即为: 32*100*(35-2+1)=32*100*34

kernel_size

stride 步长

Conv2d

torch.nn.Conv2d(
    in_channels,
    out_channels,
    kernel_size,
    stride=1,
    padding=0,
    dilation=1,
    groups=1,
    bias=True,
    padding_mode='zeros'
)

Applies a 2D convolution over an input signal composed of several input planes.

AdaptiveMaxPool1d

Applies a 1D adaptive max pooling over an input signal composed of several input planes.

相关文章

网友评论

      本文标题:PyTorch Convolution Layers

      本文链接:https://www.haomeiwen.com/subject/oecfaqtx.html