美文网首页
数组---3. 3Sum(系列) + 4sum

数组---3. 3Sum(系列) + 4sum

作者: 景景景景景景景色分明 | 来源:发表于2020-02-22 23:58 被阅读0次

    3Sum

    Given an array nums of n integers, are there elements a, b, c in nums such that a + b + c = 0? Find all unique triplets in the array which gives the sum of zero.
    Note: The solution set must not contain duplicate triplets.
    Example:
    Given array nums = [-1, 0, 1, 2, -1, -4],
    A solution set is:
    [[-1, 0, 1], [-1, -1, 2]]

    class Solution(object):
        def threeSum(self, nums):
            res = []
            nums.sort()
            length = len(nums)
            for i in range(length-2): 
                if nums[i]>0: break
                if i>0 and nums[i]==nums[i-1]: continue 
                l, r = i+1, length-1
                while l<r:
                    total = nums[i]+nums[l]+nums[r]
                    if total<0:
                        l+=1
                    elif total>0: 
                        r-=1
                    else: 
                        res.append([nums[i], nums[l], nums[r]])
                        while l<r and nums[l]==nums[l+1]: 
                            l+=1
                        while l<r and nums[r]==nums[r-1]: 
                            r-=1
                        l+=1
                        r-=1
            return res
    
    • continue那一句非常重要,防止出现两个duplicate的set,这样就不用在建立好之后再remove the duplicate。包括后面的判断l和r有没有重复的
    • 后面的l-r部分就是两端逼近,只有细节不同。
    • 和2sum一样,都要先排序。

    Runtime: 680 ms, faster than 91.77% of Python3 online submissions for 3Sum.
    Memory Usage: 16.1 MB, less than 100.00% of Python3 online submissions for 3Sum.

    1. 4Sum
      看到discuss里有人给出了n-sum的解法...
    class Solution:
        def fourSum(self, nums, target):
            def findNsum(nums, target, N, cur):
                if len(nums) < N or N < 2 or nums[0] * N > target or nums[-1] * N < target:  
                    return            
                if N == 2:  # 2-sum problem
                    l, r = 0, len(nums) - 1
                    while l < r:
                        s = nums[l] + nums[r]
                        if s == target:
                            res.append(cur + [nums[l], nums[r]])
                            while l < r and nums[l] == nums[l - 1]:
                                l += 1
                            while l < r and nums[r] == nums[r - 1]:
                                r -= 1
                            l += 1
                            r -= 1
                        elif s < target:
                            l += 1
                        else:
                            r -= 1
                else:  # reduce to N-1 sum problem
                    for i in range(len(nums) - N + 1):
                        if i == 0 or nums[i - 1] != nums[i]:
                            findNsum(nums[i + 1 :], target - nums[i], N - 1, cur + [nums[i]])
    
            res = []
            findNsum(sorted(nums), target, 4, [])
            return res
    

    膜膜膜,我自己总是试图直接引用之前的3sum,但是总是会有重复不重复这类问题,除非到最后了统一去重,要不然这种分层的很难在每一层筛选一下。
    核心部分还是2sum,但是中间cur那个部分还有判断需不需要停止循环,都考虑的很周到。

    相关文章

      网友评论

          本文标题:数组---3. 3Sum(系列) + 4sum

          本文链接:https://www.haomeiwen.com/subject/oenrqhtx.html