美文网首页
Kafka 技术汇总

Kafka 技术汇总

作者: 孙小兵 | 来源:发表于2022-03-25 22:56 被阅读0次

    1 基本概念

    Kafka 是一个分布式消息队列,具有高性能、持久化、多副本备份、横向扩展能力。生产者往队列里写消息,消费者从队列里取消息进行业务逻辑。一般在架构设计中起到解耦、削峰、异步处理的作用。
    (1)生产者和消费者(producer和consumer):消息的发送者叫 Producer,消息的使用者和接受者是 Consumer,生产者将数据保存到 Kafka 集群中,消费者从中获取消息进行业务的处理。

    image

    (2)broker:Kafka 集群中有很多台 Server,其中每一台 Server 都可以存储消息,将每一台 Server 称为一个 kafka 实例,也叫做 broker。

    (3)主题(topic):一个 topic 里保存的是同一类消息,相当于对消息的分类,每个 producer 将消息发送到 kafka 中,都需要指明要存的 topic 是哪个,也就是指明这个消息属于哪一类。

    (4)分区(partition):每个 topic 都可以分成多个 partition,每个 partition 在存储层面是 append log 文件。任何发布到此 partition 的消息都会被直接追加到 log 文件的尾部。为什么要进行分区呢?最根本的原因就是:kafka基于文件进行存储,当文件内容大到一定程度时,很容易达到单个磁盘的上限,因此,采用分区的办法,一个分区对应一个文件,这样就可以将数据分别存储到不同的server上去,另外这样做也可以负载均衡,容纳更多的消费者。

    (5)偏移量(Offset):一个分区对应一个磁盘上的文件,而消息在文件中的位置就称为 offset(偏移量),offset 为一个 long 型数字,它可以唯一标记一条消息。由于kafka 并没有提供其他额外的索引机制来存储 offset,文件只能顺序的读写,所以在kafka中几乎不允许对消息进行“随机读写”。
    (6)分布式和分区(distributed、partitioned)
      我们说 kafka 是一个分布式消息系统,所谓的分布式,实际上我们已经大致了解。消息保存在 Topic 中,而为了能够实现大数据的存储,一个 topic 划分为多个分区,每个分区对应一个文件,可以分别存储到不同的机器上,以实现分布式的集群存储。另外,每个 partition 可以有一定的副本,备份到多台机器上,以提高可用性。

    总结起来就是:一个 topic 对应的多个 partition 分散存储到集群中的多个 broker 上,存储方式是一个 partition 对应一个文件,每个 broker 负责存储在自己机器上的 partition 中的消息读写。
    (7)副本(replicated )
    kafka 还可以配置 partitions 需要备份的个数(replicas),每个 partition 将会被备份到多台机器上,以提高可用性,备份的数量可以通过配置文件指定。

    这种冗余备份的方式在分布式系统中是很常见的,那么既然有副本,就涉及到对同一个文件的多个备份如何进行管理和调度。kafka 采取的方案是:每个 partition 选举一个 server 作为“leader”,由 leader 负责所有对该分区的读写,其他 server 作为 follower 只需要简单的与 leader 同步,保持跟进即可。如果原来的 leader 失效,会重新选举由其他的 follower 来成为新的 leader。

    至于如何选取 leader,实际上如果我们了解 ZooKeeper,就会发现其实这正是 Zookeeper 所擅长的,Kafka 使用 ZK 在 Broker 中选出一个 Controller,用于 Partition 分配和 Leader 选举。

    另外,这里我们可以看到,实际上作为 leader 的 server 承担了该分区所有的读写请求,因此其压力是比较大的,从整体考虑,有多少个 partition 就意味着会有多少个leader,kafka 会将 leader 分散到不同的 broker 上,确保整体的负载均衡。

    2. zookeeper 作用

    Apache Kafka 的一个关键依赖是 Apache Zookeeper,它是一个分布式配置和同步服务。Zookeeper 是 Kafka 代理和消费者之间的协调接口。Kafka 服务器通过 Zookeeper 集群共享信息。Kafka 在 Zookeeper 中存储基本元数据,例如关于主题,代理,消费者偏移(队列读取器)等的信息。

    由于所有关键信息存储在 Zookeeper 中,并且它通常在其整体上复制此数据,因此Kafka代理/ Zookeeper 的故障不会影响 Kafka 集群的状态。Kafka 将恢复状态,一旦 Zookeeper 重新启动。 这为Kafka带来了零停机时间。Kafka 代理之间的领导者选举也通过使用 Zookeeper 在领导者失败的情况下完成。

    3.发布 - 订阅消息的工作流程

    • 生产者定期向主题发送消息。
    • Kafka 代理存储为该特定主题配置的分区中的所有消息。 它确保消息在分区之间平等共享。 如果生产者发送两个消息并且有两个分区,Kafka 将在第一分区中存储一个消息,在第二分区中存储第二消息。
    • 消费者订阅特定主题。
    • 一旦消费者订阅主题,Kafka 将向消费者提供主题的当前偏移,并且还将偏移保存在 Zookeeper 系统中。
    • 消费者将定期请求 Kafka (如100 Ms)新消息。
    • 一旦 Kafka 收到来自生产者的消息,它将这些消息转发给消费者。
    • 消费者将收到消息并进行处理。
    • 一旦消息被处理,消费者将向 Kafka 代理发送确认。
    • 一旦 Kafka 收到确认,它将偏移更改为新值,并在 Zookeeper 中更新它。 由于偏移在 - Zookeeper 中维护,消费者可以正确地读取下一封邮件,即使在服务器暴力期间。

    以上流程将重复,直到消费者停止请求。
    消费者可以随时回退/跳到所需的主题偏移量,并阅读所有后续消息。

    4.队列消息/用户组的工作流

    在队列消息传递系统而不是单个消费者中,具有相同组 ID 的一组消费者将订阅主题。 简单来说,订阅具有相同 Group ID 的主题的消费者被认为是单个组,并且消息在它们之间共享。 让我们检查这个系统的实际工作流程。

    • 生产者以固定间隔向某个主题发送消息。
    • Kafka存储在为该特定主题配置的分区中的所有消息,类似于前面的方案。
    • 单个消费者订阅特定主题,假设 Topic-01 为 Group ID 为 Group-1 。
    • Kafka 以与发布 - 订阅消息相同的方式与消费者交互,直到新消费者以相同的组 ID 订阅相同主题Topic-01 1 。
    • 一旦新消费者到达,Kafka 将其操作切换到共享模式,并在两个消费者之间共享数据。 此共享将继续,直到用户数达到为该特定主题配置的分区数。
    • 一旦消费者的数量超过分区的数量,新消费者将不会接收任何进一步的消息,直到现有消费者取消订阅任何一个消费者。 出现这种情况是因为 Kafka 中的每个消费者将被分配至少一个分区,并且一旦所有分区被分配给现有消费者,新消费者将必须等待。

    此功能也称为使用者组。 同样,Kafka 将以非常简单和高效的方式提供两个系统中最好的。

    5.分布式、副本、选举的实现

    https://www.orchome.com/22

    6.Kafka的消息结构?

    xx.index :相对offset ,绝对position
    xx.log :offset,position,message
    xx.timeindex:time,相对offset

    (1)查找segment file
    00000000000000000000.index表示最开始的文件,起始偏移量(offset)为0.第二个文件00000000000000368769.index的消息量起始偏移量为368770 = 368769 + 1.同样,第三个文件00000000000000737337.index的起始偏移量为737338=737337 + 1,其他后续文件依次类推,以起始偏移量命名并排序这些文件,只要根据offset 二分查找文件列表,就可以快速定位到具体文件。
    当offset=368776时定位到00000000000000368769.index|log

    (2)通过segment file查找message
    通过第一步定位到segment file,当offset=368776时,依次定位到00000000000000368769.index的元数据物理位置和00000000000000368769.log的物理偏移地址,然后再通过00000000000000368769.log顺序查找直到offset=368776为止。

    https://blog.csdn.net/hyj_king/article/details/105710993
    https://www.orchome.com/28
    https://www.orchome.com/29

    问题

    1. 消费者侧在获取消息时,是通过主动去pull消息呢?还是由Kafka给消费者push消息?
      答:
      在 kafka 中,采用了 pull 方式,即 consumer 在和 broker 建立连接之后,主动去 pull(或者说 fetch )消息,首先 consumer 端可以根据自己的消费能力适时的去 fetch 消息并处理,且可以控制消息消费的进度(offset)。
        partition 中的消息只有一个 consumer 在消费,且不存在消息状态的控制,也没有复杂的消息确认机制,可见 kafka broker 端是相当轻量级的。当消息被 consumer 接收之后,需要保存 Offset 记录消费到哪,以前保存在 ZK 中,由于 ZK 的写性能不好,以前的解决方法都是 Consumer 每隔一分钟上报一次,在 0.10 版本后,Kafka 把这个 Offset 的保存,从 ZK 中剥离,保存在一个名叫 consumeroffsets topic 的 Topic 中,由此可见,consumer 客户端也很轻量级。

    https://www.orchome.com/20

    1. 数据可靠性和重复消费
      生产者把消息发给Kafka,发送过程中挂掉、或者Kafka保存消息时发生异常怎么办?同理,消费者获取消费时发生异常怎么办?甚至,如果消费者已经消费了数据,但是修改offset时失败了,导致重复消费怎么办?

    发送可靠性: 发送消息后,等待确认(需要确保 足够副本节点可用状态)
    提交offset,但处理消息失败,需要保存offset,重复消费
    重复消费:有业务端 来保障(比如数据表唯一性)

    https://www.orchome.com/22

    相关文章

      网友评论

          本文标题:Kafka 技术汇总

          本文链接:https://www.haomeiwen.com/subject/ofrdjrtx.html