美文网首页数据结构与算法
数据结构与算法之最小生成树

数据结构与算法之最小生成树

作者: 大大纸飞机 | 来源:发表于2018-11-28 12:06 被阅读0次

    我们已经掌握了图的概念和基本操作,接下来了解一下图可以解决的问题。图主要用来解决多对多问题,比如有多个起点和终点,或者有多种选择的问题。例如我们要从下图中找到能连通每个顶点的最短路径,或者寻找从顶点v0到顶点v3的最短路径:

    现在我们要研究的就是寻找能连通每个顶点的最短路径,我们称这种构造连通网的最小代价生成树为最小生成树。这个问题有两个经典的算法,分别是普里姆算法和克鲁斯卡尔算法。

    普里姆(Prim)算法

    普里姆算法的思想是每次都从未选择的顶点中选择代价最小的顶点,并更新剩余顶点的最小代价值。我们以上图为例,演示普里姆算法的过程。

    首先选择一个顶点,比如v0,与v0相连的顶点记它的最小代价值为实际值,其余顶点记为∞,如下所示:

    选择顶点v0

    接下来选择距离v0最近的顶点v1加入已选列表,并更新剩余结点到已选列表的距离值,如下所示:

    选择顶点v1

    接下来再次选择距离已选列表最近的顶点,很显然v5最近,选择后结果如下:

    选择v5

    按照同样的方式,我们选择v8加入已选列表,如下所示:

    选择v8

    重复这一操作,最后我们可以得到如下路径,就是我们要构造的最小生成树:

    最终结果

    克鲁斯卡尔(Kruskal)算法

    普里姆算法是从顶点出发,我们也可以从边出发,克鲁斯卡尔算法就是每次选择合适的最小的边加入已选列表,直至所有顶点都连通。我们依然以上图为例,演示它的过程。

    因为要对边进行操作,所以首先应该对所有的边按照代价大小排序,还记得图的边集数组存储方式吗?我们把边排序后就放在一个边集数组中,如下所示:

    边集数组

    首先,我们把每个顶点都看作一棵独立的树,这些顶点组成了一个森林,而我们的目的就是把这个森林组合成一棵树,如下所示:

    顶点组成的森林

    第一步,我们从边集数组中取最短的边,将森林中的对应顶点连接起来,第一个边就是(v4, v7),weight为7,如下所示:

    连接v4和v7

    顶点v4和v7现在就属于同一棵树了,接下来我们再找最短的边,它的两个就不能在同一棵树上,第二条边是(v2, v8),如下所示:

    连接v2和v8

    按照同样的步骤,我们继续连接剩下的边,直到连接完(v3, v7)如下:

    连接v3和v7

    接下来最短的边是(v5, v6),但是顶点v5和v6在同一棵树上,如果把它们连起来,就会形成一个环,这明显是不对的,所以这个边是无效的。接下来的(v1, v2)同理,所以我们应该连接(v6, v7),如下所示:

    连接v6和v7

    至此,所有的顶点都连通了,可以看到,结果和普里姆算法是一致的。

    代码实现

    普里姆算法

    依然以邻接矩阵为例,演示普里姆算法的实现过程,代码如下所示:

    public <T> void prim(AMGraph<T> graph) {
        int len = graph.getVertexNum();
        int min = 0;
        // 相关顶点的坐标
        int[] adjvex = new int[len];
        // 最小代价
        int[] lowcost = new int[len];
        // 将位置0的顶点加入生成树,设置lowcost为0
        lowcost[0] = 0;
        adjvex[0] = 0;
    
        for (int i = 1; i < len; i++) {
            // 和v0相连的顶点的权值存入数组
            lowcost[i] = graph.getWeight(0, i);
            // 全部坐标都初始化为v0下标
            adjvex[i] = 0;
        }
    
        for (int i = 1; i < len; i++) {
            // INFINITE是一个不可能的值,这里设置为Int的最大值
            min = INFINITE;
            int j = 1, k = 0;
            while (j < len) {
                // 循环剩下的全部顶点,寻找lowcoast
                if (lowcost[j] != 0 && lowcost[j] < min) {
                    min = lowcost[j];
                    k = j;
                }
                j++;
            }
    
            System.out.println("当前顶点中最小权值的边是:(" + adjvex[k] + ", " + k + ")" + "最小值为:" + min);
    
            // 把此顶点的权值设为0
            lowcost[k] = 0;
            for (j = 1; j < len; j++) {
                // 把当前的k顶点加入已选列表,并更新剩余顶点的权值
                if (lowcost[j] != 0 && graph.getWeight(k, j) < lowcost[j]) {
                    lowcost[j] = graph.getWeight(k, j);
                    adjvex[j] = k;
                }
            }
        }
    }
    

    可以看到,因为双重for循环的原因,普里姆算法的时间复杂度为O(n2)

    克鲁斯卡尔算法

    public void kruskal(Edge[] edges) {
        int len = edges.length;
        // 定义一个数组,保存每个顶点的父结点,也就是它所在的树结构中的父结点
        int[] parent = new int[len];
        for (int i = 0; i < len; i++) {
            parent[i] = 0;
        }
    
        int begin,end;
        for (int i = 0; i < len; i++) {
            // begin顶点所在树的根结点
            begin = find(parent,edges[i].getBegin());
            // end顶点所在树的根结点
            end = find(parent,edges[i].getEnd());
            // 不在同一棵树上
            if (end != begin){
                parent[end] = begin;
                System.out.println("加入边:(" + edges[i].getBegin()+", "+edges[i].getEnd() +") , weight = "+edges[i].getWeight());
            }
        }
    }
    
    private int find(int[] parent, int find){
        // 找到这棵树的根结点
        while (parent[find]>0){
            find = parent[find];
        }
        return find;
    }
    

    这里省略了把邻接矩阵转为边集数组和对边集数组进行排序的代码。可以看到,克鲁斯卡尔算法的时间复杂度和边的个数有关,记边的个数为e,则其时间复杂度为O(eloge)

    总结

    普里姆算法和克鲁斯卡尔算法都有其适用范围,虽然克鲁斯卡尔算法的时间复杂度较低,但是它的实际值和边的个数有很大关系,当边数很少时,它的效率十分高。而在边数很多的稠密图中,使用普里姆算法会更好一些。


    本文到此就结束了,如果您喜欢我的文章,可以关注我的微信公众号: 大大纸飞机

    或者扫描下方二维码直接添加:

    公众号

    您也可以关注我的github:https://github.com/LtLei/articles

    编程之路,道阻且长。唯,路漫漫其修远兮,吾将上下而求索。

    相关文章

      网友评论

        本文标题:数据结构与算法之最小生成树

        本文链接:https://www.haomeiwen.com/subject/ohbqtqtx.html