美文网首页
AQS源码和原理分析

AQS源码和原理分析

作者: 无聊之园 | 来源:发表于2019-04-30 11:42 被阅读0次

AbstractQueuedSynchronizer的父类是AbstractOwnableSynchronizer。 AbstractOwnableSynchronizer类功能很单一:只是set和get独占资源线程。什么是独占独占资源线程?比如:ReentrantLock可重入锁的第一个调用lock方法的线程,这个线程锁住资源,其他线程调用lock方法只能等待,那么这个线程就是独占资源线程。

public abstract class AbstractQueuedSynchronizer
    extends AbstractOwnableSynchronizer
    implements java.io.Serializable {

image.png

AQS的大概原理和流程:

维护了一个state变量和node双向fifo链表。
     已获取资源占有许可的数量。比如:如果线程调用acquire(1)请求资源许可,acquire会调用一次tryAcquire(1)尝试获取资源。
     如果获取成功:则state加1,并调用AQS的父类AbstractOwnableSynchronizer的设置独占线程,把当前独占线程设置当前线程。
     如果调用失败:则说明,前面已经有线程占用了这个资源,需要等待的线程释放。则把当前线程封装成node节点,放入node双向链表,之后Locksupport.pack()堵塞当前线程。加入这个线程堵塞后被唤醒,则继续循环调用tryAcquire方法获取资源许可,获取到了,则把自身node节点设置为node链表的头节点,把之前的头节点去掉。

     如果线程释放资源,调用release方法,release方法会调用tryRelease方法尝试释放资源,如果释放成功,则state减1,再调用AQS的父类AbstractOwnableSynchronizer的设置独占线程为null,再locksupport.unpack()双向node链表的头node节点的线程,恢复其执行。

维护了一个condition单向链表。
condition是一个接口,AQS的内部类conditionObject实现了这个接口。这个接口的作用类似于实现java Object的wait方法,notify方法。当然condition是内部的数据结构进行Locksupport.pack和unpack来实现的,而且提供了超时机制。
condition并不是AQS维护,只有当需要await和signal机制,通过new ConditionObject()生成了这个对象,调用这个对象的方法进行使用,AQS本身不存在这个对象的引用,condition单链表也是conditionObject内部类本身在维护,而不是AQS在维护。
调用condition.await()方法,意味着当前线程进入等待状态。将当前节点包装成node节点,放入condition链表的尾部。然后调用AQS的release方法,释放state,locksupport.unpack()双向node链表的头结点线程。之后,再将自身线程堵塞。
调用condition.signal()方法,意味着唤醒其他线程调用condition.await()方法进入等待状态的线程。会将conditionObject维护的node单向链表的头节点,移动到AQS维护的双向node节点的尾部,等待其他线程使用完资源后调用release方法一个一个唤醒。

看关键代码

先看成员变量

private transient volatile Node head;

    /**
     * Tail of the wait queue, lazily initialized.  Modified only via
     * method enq to add new wait node.
     */
    private transient volatile Node tail;

    /**
     * The synchronization state.
     */
// 维护的state变量
    private volatile int state;
 // cas的unsafe工具类
private static final Unsafe unsafe = Unsafe.getUnsafe();
// state变量的内存偏移量,用于unsafe的cas操作
 private static final long stateOffset;
  // node双向链表的head的内存偏移量,用于unsafe的cas操作
    private static final long headOffset;
// node双向链表的tail的内存偏移量,用于unsafe的cas操作
    private static final long tailOffset;
// node节点的waitStatus的内存偏移量, 用于unsafe的cas操作
    private static final long waitStatusOffset;
// node节点的next的内存偏移量, 用于unsafe的cas操作
    private static final long nextOffset;
// 静态代码快,初始化这些变量。 
static {
        try {
            stateOffset = unsafe.objectFieldOffset
                (AbstractQueuedSynchronizer.class.getDeclaredField("state"));
            headOffset = unsafe.objectFieldOffset
                (AbstractQueuedSynchronizer.class.getDeclaredField("head"));
            tailOffset = unsafe.objectFieldOffset
                (AbstractQueuedSynchronizer.class.getDeclaredField("tail"));
            waitStatusOffset = unsafe.objectFieldOffset
                (Node.class.getDeclaredField("waitStatus"));
            nextOffset = unsafe.objectFieldOffset
                (Node.class.getDeclaredField("next"));

        } catch (Exception ex) { throw new Error(ex); }
    }

可见,aqs的成员变量,只是维护了state变量,和node双向链表,并没有维护condition相关的链表。

看AQS的内部类Node

static final class Node {
        /** Marker to indicate a node is waiting in shared mode */
        static final Node SHARED = new Node();
        /** Marker to indicate a node is waiting in exclusive mode */
        static final Node EXCLUSIVE = null;

        /** waitStatus value to indicate thread has cancelled */
        static final int CANCELLED =  1;
        /** waitStatus value to indicate successor's thread needs unparking */
        static final int SIGNAL    = -1;
        /** waitStatus value to indicate thread is waiting on condition */
        static final int CONDITION = -2;
        /**
         * waitStatus value to indicate the next acquireShared should
         * unconditionally propagate
         */
        static final int PROPAGATE = -3;

        /**
         * Status field, taking on only the values:
         *   SIGNAL:     The successor of this node is (or will soon be)
         *               blocked (via park), so the current node must
         *               unpark its successor when it releases or
         *               cancels. To avoid races, acquire methods must
         *               first indicate they need a signal,
         *               then retry the atomic acquire, and then,
         *               on failure, block.
         *   CANCELLED:  This node is cancelled due to timeout or interrupt.
         *               Nodes never leave this state. In particular,
         *               a thread with cancelled node never again blocks.
         *   CONDITION:  This node is currently on a condition queue.
         *               It will not be used as a sync queue node
         *               until transferred, at which time the status
         *               will be set to 0. (Use of this value here has
         *               nothing to do with the other uses of the
         *               field, but simplifies mechanics.)
         *   PROPAGATE:  A releaseShared should be propagated to other
         *               nodes. This is set (for head node only) in
         *               doReleaseShared to ensure propagation
         *               continues, even if other operations have
         *               since intervened.
         *   0:          None of the above
         *
         * The values are arranged numerically to simplify use.
         * Non-negative values mean that a node doesn't need to
         * signal. So, most code doesn't need to check for particular
         * values, just for sign.
         *
         * The field is initialized to 0 for normal sync nodes, and
         * CONDITION for condition nodes.  It is modified using CAS
         * (or when possible, unconditional volatile writes).
         */
        volatile int waitStatus;

        /**
         * Link to predecessor node that current node/thread relies on
         * for checking waitStatus. Assigned during enqueuing, and nulled
         * out (for sake of GC) only upon dequeuing.  Also, upon
         * cancellation of a predecessor, we short-circuit while
         * finding a non-cancelled one, which will always exist
         * because the head node is never cancelled: A node becomes
         * head only as a result of successful acquire. A
         * cancelled thread never succeeds in acquiring, and a thread only
         * cancels itself, not any other node.
         */
        volatile Node prev;

        /**
         * Link to the successor node that the current node/thread
         * unparks upon release. Assigned during enqueuing, adjusted
         * when bypassing cancelled predecessors, and nulled out (for
         * sake of GC) when dequeued.  The enq operation does not
         * assign next field of a predecessor until after attachment,
         * so seeing a null next field does not necessarily mean that
         * node is at end of queue. However, if a next field appears
         * to be null, we can scan prev's from the tail to
         * double-check.  The next field of cancelled nodes is set to
         * point to the node itself instead of null, to make life
         * easier for isOnSyncQueue.
         */
        volatile Node next;

        /**
         * The thread that enqueued this node.  Initialized on
         * construction and nulled out after use.
         */
        volatile Thread thread;

        /**
         * Link to next node waiting on condition, or the special
         * value SHARED.  Because condition queues are accessed only
         * when holding in exclusive mode, we just need a simple
         * linked queue to hold nodes while they are waiting on
         * conditions. They are then transferred to the queue to
         * re-acquire. And because conditions can only be exclusive,
         * we save a field by using special value to indicate shared
         * mode.
         */
        Node nextWaiter;

        /**
         * Returns true if node is waiting in shared mode.
         */
        final boolean isShared() {
            return nextWaiter == SHARED;
        }

        /**
         * Returns previous node, or throws NullPointerException if null.
         * Use when predecessor cannot be null.  The null check could
         * be elided, but is present to help the VM.
         *
         * @return the predecessor of this node
         */
        final Node predecessor() throws NullPointerException {
            Node p = prev;
            if (p == null)
                throw new NullPointerException();
            else
                return p;
        }

        Node() {    // Used to establish initial head or SHARED marker
        }

        Node(Thread thread, Node mode) {     // Used by addWaiter
            this.nextWaiter = mode;
            this.thread = thread;
        }

        Node(Thread thread, int waitStatus) { // Used by Condition
            this.waitStatus = waitStatus;
            this.thread = thread;
        }
    }

node类,包装了线程,双向链表的前后引用,节点的几种状态和当前节点的状态。
cancelled:代表取消,和线程有关,暂时不考虑线程中断。
signal:代表此节点的next节点可以被唤醒,node的双链表,除了第一次构造node双链表的时候head节点为逻辑null节点,其他时候,head节点都是正在运行的线程所对应的节点,唤醒的也都是head节点的next节点。
condition:代表是调用condition.signal方法调用之后,从condition单向node链表中移过来的节点。也是可以唤醒的节点。

关键方法

await方法

// acquire方法获取资源占有权
 public final void acquire(int arg) {
     /** 尝试获取,tryAcquire方法是子类必须实现的方法,
* 比如公平锁和非公平锁的不同就在于tryAcquire方法的实现的不同。
* 获取失败,则addWaiter方法,包装node节点,放入node双向链表。再acquireQueued堵塞线程,循环获取资源占有权。
*/   
if (!tryAcquire(arg) &&
            acquireQueued(addWaiter(Node.EXCLUSIVE), arg))
            selfInterrupt();
    }
protected boolean tryAcquire(int arg) {
        throw new UnsupportedOperationException();
    }
private Node addWaiter(Node mode) {
      // 新构建的node节点,waitStatus初始值为0
        Node node = new Node(Thread.currentThread(), mode);
        // Try the fast path of enq; backup to full enq on failure
        Node pred = tail;
         // 如果尾部不为空,则说明node双向链表之前已经被初始化了,那么直接把新node节点加入尾部
        if (pred != null) {
            node.prev = pred;
            if (compareAndSetTail(pred, node)) {
                pred.next = node;
                return node;
            }
        }
      // 如果尾部为null,则说明node双向链表之前没有被初始化,则,调用enq方法,初始化node双向链表,并且把新节点加入尾部
        enq(node);
        return node;
    }
private Node enq(final Node node) {
    // 循环自旋cas,防止其他线程已经初始化了这个链表  
      for (;;) {
            Node t = tail;
            if (t == null) { // Must initialize
                // 初始化的链表,头节点是一个逻辑意义为null的节点,waitStatus为初始值0。
                if (compareAndSetHead(new Node()))
                    tail = head;
            } else {
                node.prev = t;
                if (compareAndSetTail(t, node)) {
                    t.next = node;
                    return t;
                }
            }
        }
    }
final boolean acquireQueued(final Node node, int arg) {
        boolean failed = true;
        try {
            boolean interrupted = false;
            for (;;) {
                final Node p = node.predecessor();
                /** 双向node链表是fifo特性的,所以,
                * 能够获取资源权限的节点,
                * 其前一个节点必须是头部节点(头部节点就是正在占有资源的线程,              
               * 是其调用release方法让出资源)
                */
                if (p == head && tryAcquire(arg)) {
                  // 把之前的头节点去掉,新获取到资源权限的节点设置为新头节点
                    setHead(node);
                    p.next = null; // help GC
                    failed = false;
                    return interrupted;
                }
                /* 是否应该堵塞线程,当前节点的前面一个节点p的waitStatus为      
                * signal,则堵塞,如果p的waitStatus没有初始化,为0,或者为  
                * PROPAGATE,* 则更改为signal,继续循环。
                * parkAndCheckInterrupt方法堵塞当前线程
                 */
                if (shouldParkAfterFailedAcquire(p, node) &&
                    parkAndCheckInterrupt())
                    interrupted = true;
            }
        } finally {
            if (failed)
                cancelAcquire(node);
        }
    }
private static boolean shouldParkAfterFailedAcquire(Node pred, Node node) {
        int ws = pred.waitStatus;
        if (ws == Node.SIGNAL)
            /*
             * This node has already set status asking a release
             * to signal it, so it can safely park.
             */
            return true;
        if (ws > 0) {
            /*
             * Predecessor was cancelled. Skip over predecessors and
             * indicate retry.
             */
            do {
                node.prev = pred = pred.prev;
            } while (pred.waitStatus > 0);
            pred.next = node;
        } else {
            /*
             * waitStatus must be 0 or PROPAGATE.  Indicate that we
             * need a signal, but don't park yet.  Caller will need to
             * retry to make sure it cannot acquire before parking.
             */
            compareAndSetWaitStatus(pred, ws, Node.SIGNAL);
        }
        return false;
    }

acquire方法总结:如果获取成功:则state加1,并调用AQS的父类AbstractOwnableSynchronizer的设置独占线程,把当前独占线程设置当前线程。
如果调用失败:则说明,前面已经有线程占用了这个资源,需要等待的线程释放。则把当前线程封装成node节点,放入node双向链表,之后Locksupport.pack()堵塞当前线程。加入这个线程堵塞后被唤醒,则继续循环调用tryAcquire方法获取资源许可,获取到了,则把自身node节点设置为node链表的头节点,把之前的头节点去掉。
node节点的waitStatus为signal,则意味这其next节点可以被唤醒。

release方法

 public final boolean release(int arg) {
     // 调用tryRelease方法尝试释放资源,释放成功,则state减arg。然后locksupport.unpack唤醒双向node链表的头部第二个节点。
//  tryRelease也是必须要子类实现的方法
     if (tryRelease(arg)) {
            Node h = head;
            if (h != null && h.waitStatus != 0)
                unparkSuccessor(h);
            return true;
        }
        return false;
    }
protected boolean tryRelease(int arg) {
        throw new UnsupportedOperationException();
    }
private void unparkSuccessor(Node node) {
       /*
        * If status is negative (i.e., possibly needing signal) try
        * to clear in anticipation of signalling.  It is OK if this
        * fails or if status is changed by waiting thread.
        */
       int ws = node.waitStatus;
     // node的waitStatus为signal或condition,则可以唤醒,先重置node的waitStatus为0
     if (ws < 0)
           compareAndSetWaitStatus(node, ws, 0);

       /*
        * Thread to unpark is held in successor, which is normally
        * just the next node.  But if cancelled or apparently null,
        * traverse backwards from tail to find the actual
        * non-cancelled successor.
        */
       Node s = node.next;
       if (s == null || s.waitStatus > 0) {
           s = null;
           for (Node t = tail; t != null && t != node; t = t.prev)
               if (t.waitStatus <= 0)
                   s = t;
       }
       // 头部第二个节点非null,则唤醒这个节点
       if (s != null)
           LockSupport.unpark(s.thread);
   }

release方法总结:如果线程释放资源,调用release方法,release方法会调用tryRelease方法尝试释放资源,如果释放成功,tryRelease方法会将state减1,再调用AQS的父类AbstractOwnableSynchronizer的设置独占线程为null,再locksupport.unpack()双向node链表的头node节点的线程,恢复其执行。

再研究AQS的内部类ConditionObject

看成员变量

public class ConditionObject implements Condition, java.io.Serializable {
        private static final long serialVersionUID = 1173984872572414699L;
        /** First node of condition queue. */
        private transient Node firstWaiter;
        /** Last node of condition queue. */
        private transient Node lastWaiter;

conditionObject本身维护condition的单向链表。

看关键方法

await方法

public final void await() throws InterruptedException {
            if (Thread.interrupted())
                throw new InterruptedException();
            // 把线程封装成node节点,放入condition单向列表
            Node node = addConditionWaiter();
            // fullRelease方法会调用AQS的release方法,释放资源占有权,恢复node双向链表的头部第二个节点运行。
            int savedState = fullyRelease(node);
            int interruptMode = 0;
             // 当前节点不再sync队列中(就是AQS维护的双向node链表),意味着,之前唤醒的线程已经开始运行,并且把自己作为了新头节点,把这个线程对应的头节点剔除了。
            // 不再sync队列,则堵塞线程
            while (!isOnSyncQueue(node)) {
                LockSupport.park(this);
                if ((interruptMode = checkInterruptWhileWaiting(node)) != 0)
                    break;
            }
            if (acquireQueued(node, savedState) && interruptMode != THROW_IE)
                interruptMode = REINTERRUPT;
            if (node.nextWaiter != null) // clean up if cancelled
                unlinkCancelledWaiters();
            if (interruptMode != 0)
                reportInterruptAfterWait(interruptMode);
        }
// 把线程封装成node节点,放入condition单链表
private Node addConditionWaiter() {
            Node t = lastWaiter;
            // If lastWaiter is cancelled, clean out.
            if (t != null && t.waitStatus != Node.CONDITION) {
                unlinkCancelledWaiters();
                t = lastWaiter;
            }
            // 这个节点的waitStatus为condition
            Node node = new Node(Thread.currentThread(), Node.CONDITION);
            if (t == null)
                firstWaiter = node;
            else
                t.nextWaiter = node;
            lastWaiter = node;
            return node;
        }
final int fullyRelease(Node node) {
        boolean failed = true;
        try {
            int savedState = getState();
            // 释放所有许可,唤醒node双链表头部第二个线程
            if (release(savedState)) {
                failed = false;
                return savedState;
            } else {
                throw new IllegalMonitorStateException();
            }
        } finally {
            if (failed)
                node.waitStatus = Node.CANCELLED;
        }
    }

await方法总结:调用condition.await()方法,意味着当前线程进入等待状态。将当前节点包装成node节点,放入condition链表的尾部。然后调用AQS的release方法,释放state,locksupport.unpack()双向node链表的头结点线程。之后,再将自身线程堵塞。
再看signal方法

public final void signal() {
            if (!isHeldExclusively())
                throw new IllegalMonitorStateException();
            Node first = firstWaiter;
        // 如果condition链表的第一个节点不为null,则唤醒    
        if (first != null)
                doSignal(first);
        }
// transferForSignal
 private void doSignal(Node first) {
            do {
                // 移除头节点
                if ( (firstWaiter = first.nextWaiter) == null)
                    lastWaiter = null;
                first.nextWaiter = null;
              // transferForSignal,将头节点移入sync链表,也就是aqs维护的双向node列表,等待aqs的release方法的依次唤醒。
          // 如果transferForSignal成功,则跳出循环,否则,一直循环头部的下一个节点
            } while (!transferForSignal(first) &&
                     (first = firstWaiter) != null);
        }
final boolean transferForSignal(Node node) {
        /*
         * If cannot change waitStatus, the node has been cancelled.
         */
      // 如果这个节点的waitStatus不是condition,(比如,被concelled了),则跳出来 
       if (!compareAndSetWaitStatus(node, Node.CONDITION, 0))
            return false;

        /*
         * Splice onto queue and try to set waitStatus of predecessor to
         * indicate that thread is (probably) waiting. If cancelled or
         * attempt to set waitStatus fails, wake up to resync (in which
         * case the waitStatus can be transiently and harmlessly wrong).
         */
        // 加入aqs维护的双向node链表
        Node p = enq(node);
        int ws = p.waitStatus;
        // 线程被打断
        if (ws > 0 || !compareAndSetWaitStatus(p, ws, Node.SIGNAL))
            LockSupport.unpark(node.thread);
        return true;
    }

signal方法总结:调用condition.signal()方法,意味着唤醒其他线程调用condition.await()方法进入等待状态的线程。会将conditionObject维护的node单向链表的头节点,移动到AQS维护的双向node节点的尾部,等待其他线程使用完资源后调用release方法一个一个唤醒。

相关文章

网友评论

      本文标题:AQS源码和原理分析

      本文链接:https://www.haomeiwen.com/subject/oigenqtx.html