美文网首页交通运输工程
k近邻法的kd Tree搜索

k近邻法的kd Tree搜索

作者: jhttroy | 来源:发表于2018-09-05 18:04 被阅读88次

    最近在读李航老师的《统计学习方法》,读到第三章的k近邻算法时,在N>>k时遍历搜索比较费时,为了更高效的搜索可以采用kd Tree的方式组织Training数据,我看到一篇博客,前面的图示理解部分说的比较到位,不过博主的代码有些问题,包括:

    • 代码的完整逻辑是不对的
    • 并没有对已搜索的节点进行标注,导致重复计算(走回头路),这样整个kd Tree的初衷就完全没意义了

    于是在该代码基础上改了一版正确的,带了一些调试信息。

    • 更正代码逻辑
    • 代码clean up
    • 更新为python 3兼容
    • 增加up_traced标志避免走回头路,支持多次搜索,每次搜索前做好该标志的清理
    # -*- coding: utf-8 -*-
    
    import numpy as np
    
    
    class Node:
        def __init__(self, data, parent, dim):
            self.data = data
            self.parent = parent
            self.lChild = None
            self.rChild = None
            self.dim = dim
            # only track search_Up process
            self.up_traced = False
    
        def setLChild(self, lChild):
            self.lChild = lChild
    
        def setRChild(self, rChild):
            self.rChild = rChild
    
    
    class KdTree:
        def __init__(self, train):
            self.root = self.__build(train, 1, None)
    
        def __build(self, train, depth, parent):  # 递归建树
            (m, k) = train.shape
    
            if m == 0:
                return None
    
            train = train[train[:, depth % k].argsort()]
    
            root = Node(train[m//2], parent, depth % k)
            root.setLChild(self.__build(train[:m//2, :], depth+1, root))
            root.setRChild(self.__build(train[m//2+1:, :], depth+1, root))
            return root
    
        def findNearestPointAndDistance(self, point):  # 查找与point距离最近的点
            point = np.array(point)
            node = self.__findSmallestSubSpace(point, self.root)
            print("Start node:", node.data)
            return self.__searchUp(point, node, node, np.linalg.norm(point - node.data))
    
        def __searchUp(self, point, node, nearestPoint, nearestDistance):
            if node.parent is None:
                return [nearestPoint, nearestDistance]
    
            print("UP:", node.parent.data)
            node.parent.up_traced = True
            distance = np.linalg.norm(node.parent.data - point)
            if distance < nearestDistance:
                nearestDistance = distance
                nearestPoint = node.parent
    
            distance = np.abs(node.parent.data[node.dim] - point[node.parent.dim])
            if distance < nearestDistance:
                [p, d] = self.__searchDown(point, node.parent)
                if d < nearestDistance:
                    nearestDistance = d
                    nearestPoint = p
    
            [p, d] = self.__searchUp(point, node.parent, nearestPoint, nearestDistance)
            if d < nearestDistance:
                nearestDistance = d
                nearestPoint = p
    
            return [nearestPoint, nearestDistance]
    
        def __searchDown(self, point, node):
    
            nearestDistance = np.linalg.norm(node.data - point)
            nearestPoint = node
    
            print("DOWN:", node.data)
            if node.lChild is not None and node.lChild.up_traced is False:
                [p, d] = self.__searchDown(point, node.lChild)
                if d < nearestDistance:
                    nearestDistance = d
                    nearestPoint = p
    
            if node.rChild is not None and node.rChild.up_traced is False:
                [p, d] = self.__searchDown(point, node.rChild)
                if d < nearestDistance:
                    nearestDistance = d
                    nearestPoint = p
    
            print("---- ", nearestPoint.data, nearestDistance)
            return [nearestPoint, nearestDistance]
    
        def __findSmallestSubSpace(self, point, node):  # 找到这个点所在的最小的子空间
            """
            从根节点出发,递归地向下访问kd树。如果point当前维的坐标小于切分点的坐标,则
            移动到左子节点,否则移动到右子节点。直到子节点为叶节点为止。
            """
            # New search: clean up up_traced flag for all up path nodes
            node.up_traced = False
            if point[node.dim] < node.data[node.dim]:
                if node.lChild is None:
                    return node
                else:
                    return self.__findSmallestSubSpace(point, node.lChild)
            else:
                if node.rChild is None:
                    return node
                else:
                    return self.__findSmallestSubSpace(point, node.rChild)
    
    
    train = np.array([[2, 3], [5, 4], [9, 6], [4, 7], [8, 1], [7, 2]])
    train = np.array([[2, 5], [3, 2], [3, 7], [8, 3], [6, 6], [1, 1], [1, 8]])
    kdTree = KdTree(train)
    
    
    target = np.array([6, 4])
    print('##### target :', target)
    [p, d] = kdTree.findNearestPointAndDistance(target)
    
    print(p.data, d)
    print('---------------------')
    
    (m, k) = train.shape
    for i in range(m):
        print(train[i], np.linalg.norm(train[i]-target))
    
    
    target = np.array([2, 2])
    print('')
    print('##### target :', target)
    [p, d] = kdTree.findNearestPointAndDistance(target)
    
    print(p.data, d)
    print('---------------------')
    
    for i in range(m):
        print(train[i], np.linalg.norm(train[i]-target))
    

    相关文章

      网友评论

        本文标题:k近邻法的kd Tree搜索

        本文链接:https://www.haomeiwen.com/subject/oiqzwftx.html