美文网首页
第4节:更多的文本任务和技术

第4节:更多的文本任务和技术

作者: hoteaxu | 来源:发表于2020-03-31 16:25 被阅读0次

四、词向量后的nlp更多应用-机器翻译、文本分类…

有了具备语义信息的词向量,很多文本任务就可以运行起来了

一般的任务分类有如下:

(这个也可以用nlp算法归类那一页替代)

NLP算法归类整理

下面对我们的算法做一些比较简单的举例。

1.词法分析(分词、词性、实体):

–算法:基于Bi-LSTM-CRF算法体系,以及丰富的多领域词表

–应用:优酷、YunOS、蚂蚁金服、推荐算法、资讯搜索等

2.句法分析(依存句法分析、成分句法分析):

–算法:Shift-reduce,graph-based,Bi-LSTM

–新闻领域、商品评价、商品标题、搜索Query

–应用:资讯搜索、评价情感分析

3.情感分析(情感对象、情感属性、情感属性关联):

–算法:情感词典挖掘,属性级、句子级、篇章级情感分析

–应用:商品评价、商品问答、品牌舆情、互联网舆情

4.句子生成(句子可控改写、句子压缩):

–算法:Beam Search、Seq2Seq+Attention

–应用:商品标题压缩,资讯标题改写,PUSH消息改写

5.句子相似度(浅层相似度、语义相似度):

–算法:Edit Distance,Word2Vec,DSSM

–应用:问大家相似问题、商品重发检测、影视作品相似等

6.文本分类/聚类(垃圾防控、信息聚合):

–算法:ME,SVM,FastText

–应用:商品类目预测、问答意图分析、文本垃圾过滤、舆情聚类、名片OCR后语义识别等

7.文本表示(词向量、句子向量、篇章向量、Seq2Seq):

–Word2Vec、LSTM、DSSM、Seq2Seq为基础进行深入研究

8.知识库

–数据规模:电商同义词,通用同义词,电商上下位,通用上下位,领域词库(电商词、娱乐领域词、通用实体词),情感词库

–挖掘算法:bootstrapping,click-through mining,word2vec,k-means,CRF

–应用:语义归一、语义扩展、Query理解、意图理解、情感分析

9.语料库

–分词、词性标注数据,依存句法标注数据

意图识别、ner的算法介绍

相关文章

网友评论

      本文标题:第4节:更多的文本任务和技术

      本文链接:https://www.haomeiwen.com/subject/ojzwuhtx.html