美文网首页
python—手把手教你实现2048小游戏

python—手把手教你实现2048小游戏

作者: BABYMISS | 来源:发表于2020-05-18 20:24 被阅读0次

相信2048这个游戏对大家来说一定不陌生,下面这篇文章就主要给大家介绍了怎么用Python实现2048小游戏,文中通过注释与示例代码介绍的很详细,相信对大家的理解和学习具有一定的参考借鉴价值,有需要的朋友们一起来看看吧。

前言

2048游戏规则:简单的移动方向键让数字叠加,并且获得这些数字每次叠加后的得分,当出现2048这个数字时游戏胜利。同时每次移动方向键时,都会在这个4*4的方格矩阵的空白区域随机产生一个数字2或者4,如果方格被数字填满了,那么就GameOver了。

主逻辑图

逻辑图解:黑色是逻辑层,蓝色是外部方法,红色是类内方法,稍后即可知道~

下面容我逐行解释主逻辑main()函数,并且在其中穿叉外部定义的函数与类。

主逻辑代码解读(完整代码见文末)

主逻辑main如下,之后的是对主函数中的一些方法的解读:

def main(stdscr):

def init():

#重置游戏棋盘

game_field.reset()

return 'Game'

def not_game(state):

#画出 GameOver 或者 Win 的界面

game_field.draw(stdscr)

#读取用户输入得到action,判断是重启游戏还是结束游戏

action = get_user_action(stdscr)

responses = defaultdict(lambda: state) #默认是当前状态,没有行为就会一直在当前界面循环

responses['Restart'], responses['Exit'] = 'Init', 'Exit' #对应不同的行为转换到不同的状态

return responses[action]

def game():

#画出当前棋盘状态

game_field.draw(stdscr)

#读取用户输入得到action

action = get_user_action(stdscr)

if action == 'Restart':

  return 'Init'

if action == 'Exit':

  return 'Exit'

if game_field.move(action): # move successful

  if game_field.is_win():

  return 'Win'

  if game_field.is_gameover():

  return 'Gameover'

return 'Game'

state_actions = {

  'Init': init,

  'Win': lambda: not_game('Win'),

  'Gameover': lambda: not_game('Gameover'),

  'Game': game

}

curses.use_default_colors()

game_field = GameField(win=32)

state = 'Init'

#状态机开始循环

while state != 'Exit':

state = state_actions[state]()

逐条解读(代码框内会标注是来自外部,无标注则是来自内部):定义主函数

def init():

#重置游戏棋盘

game_field.reset()

reset出自外部定义的类,game_field=GameField的一个方法reset:

外部:

state_actions = {

'Init': init,

'Win': lambda: not_game('Win'),

'Gameover': lambda: not_game('Gameover'),

'Game': game

}

def not_game(state):

#画出 GameOver 或者 Win 的界面

game_field.draw(stdscr)

draw是导入的类game_field=GameField中的方法:

#来自外部类

def draw(self, screen):

help_string1 = '(W)Up (S)Down (A)Left (D)Right'

help_string2 = ' (R)Restart (Q)Exit'

gameover_string = '  GAME OVER'

win_string = '  YOU WIN!'

#定义各个字符串

def cast(string):

  screen.addstr(string + '\n')

def draw_hor_separator():

  line = '+' + ('+------' * self.width + '+')[1:]

  separator = defaultdict(lambda: line)

  if not hasattr(draw_hor_separator, "counter"):

  draw_hor_separator.counter = 0

  cast(separator[draw_hor_separator.counter])

  draw_hor_separator.counter += 1

def draw_row(row):

  cast(''.join('|{: ^5} '.format(num) if num > 0 else '| ' for num in row) + '|')

screen.clear()

cast('SCORE: ' + str(self.score))

if 0 != self.highscore:

  cast('HGHSCORE: ' + str(self.highscore))

for row in self.field:

  draw_hor_separator()

  draw_row(row)

draw_hor_separator()

if self.is_win():

  cast(win_string)

else:

  if self.is_gameover():

  cast(gameover_string)

  else:

  cast(help_string1)

cast(help_string2)

#这里面的draw方法的字函数我就不做多的解释了,很简单的一些概念。

#但是又运用到了很优秀的精简代码。

#有的地方建议去查一下python的一些高级概念,我就不做多的介绍了。

这里面的draw方法的字函数我就不做多的解释了,很简单的一些概念。

但是又运用到了很优秀的精简代码。

有的地方建议去查一下python的一些高级概念,我就不做多的介绍了。

#读取用户输入得到action,判断是重启游戏还是结束游戏

action = get_user_action(stdscr)

读取用户行为,函数来自于代码初始的定义

#来自外部定义的函数

def get_user_action(keyboard):

char = "N"

while char not in actions_dict:

char = keyboard.getch()

return actions_dict[char]

在结尾处,也即是主函数执行的第三步,定义了state = state_actionsstate这一实例:

#主函数底部:

state = 'Init'

#状态机开始循环

while state != 'Exit':

state = state_actions[state]()

def game():

#画出当前棋盘状态

game_field.draw(stdscr)

#读取用户输入得到action

action = get_user_action(stdscr)

if action == 'Restart':

  return 'Init'

if action == 'Exit':

  return 'Exit'

if game_field.move(action): # move successful

  if game_field.is_win():

  return 'Win'

  if game_field.is_gameover():

  return 'Gameover'

return 'Game'

#game()函数的定义类似于上面已经讲过的not_game(),只是game()有了内部循环

#即如果不是Restart/Exit或者对move之后的状态进行判断,如果不是结束游戏,就一直在game()内部循环。

game()函数的定义类似于上面已经讲过的not_game() ,只是game()有了内部循环,即如果不是Restart/Exit或者对move之后的状态进行判断,如果不是结束游戏,就一直在game()内部循环。

state_actions = {

  'Init': init,

  'Win': lambda: not_game('Win'),

  'Gameover': lambda: not_game('Gameover'),

  'Game': game

  }

curses.use_default_colors()

game_field = GameField(win=32)

state = 'Init'

#状态机开始循环

while state != 'Exit':

state = state_actions[state]()

#此处的意思是:state=state_actions[state] 可以看做是:

#state=init()或者state=not_game(‘Win')或者是另外的not_game(‘Gameover')/game()

此处的意思是:state=state_actions[state] 可以看做是:state=init()或者state=not_game(‘Win’)或者是另外的not_game(‘Gameover’)/game()

废话不多说,上一个我的成功的图,另外,可以通过设置最后几行中的win=32来决定你最终获胜的条件!

完整代码

#-*- coding:utf-8 -*-

import curses

from random import randrange, choice # generate and place new tile

from collections import defaultdict

letter_codes = [ord(ch) for ch in 'WASDRQwasdrq']

actions = ['Up', 'Left', 'Down', 'Right', 'Restart', 'Exit']

actions_dict = dict(zip(letter_codes, actions * 2))

def transpose(field):

return [list(row) for row in zip(*field)]

def invert(field):

return [row[::-1] for row in field]

class GameField(object):

def __init__(self, height=4, width=4, win=2048):

self.height = height

self.width = width

self.win_value = win

self.score = 0

self.highscore = 0

self.reset()

def reset(self):

if self.score > self.highscore:

  self.highscore = self.score

self.score = 0

self.field = [[0 for i in range(self.width)] for j in range(self.height)]

self.spawn()

self.spawn()

def move(self, direction):

def move_row_left(row):

  def tighten(row): # squeese non-zero elements together

  new_row = [i for i in row if i != 0]

  new_row += [0 for i in range(len(row) - len(new_row))]

  return new_row

  def merge(row):

  pair = False

  new_row = []

  for i in range(len(row)):

  if pair:

  new_row.append(2 * row[i])

  self.score += 2 * row[i]

  pair = False

  else:

  if i + 1 < len(row) and row[i] == row[i + 1]:

    pair = True

    new_row.append(0)

  else:

    new_row.append(row[i])

  assert len(new_row) == len(row)

  return new_row

  return tighten(merge(tighten(row)))

moves = {}

moves['Left'] = lambda field:    \

  [move_row_left(row) for row in field]

moves['Right'] = lambda field:    \

  invert(moves['Left'](invert(field)))

moves['Up'] = lambda field:    \

  transpose(moves['Left'](transpose(field)))

moves['Down'] = lambda field:    \

  transpose(moves['Right'](transpose(field)))

if direction in moves:

  if self.move_is_possible(direction):

  self.field = moves[direction](self.field)

  self.spawn()

  return True

  else:

  return False

def is_win(self):

return any(any(i >= self.win_value for i in row) for row in self.field)

def is_gameover(self):

return not any(self.move_is_possible(move) for move in actions)

def draw(self, screen):

help_string1 = '(W)Up (S)Down (A)Left (D)Right'

help_string2 = ' (R)Restart (Q)Exit'

gameover_string = '  GAME OVER'

win_string = '  YOU WIN!'

def cast(string):

  screen.addstr(string + '\n')

def draw_hor_separator():

  line = '+' + ('+------' * self.width + '+')[1:]

  separator = defaultdict(lambda: line)

  if not hasattr(draw_hor_separator, "counter"):

  draw_hor_separator.counter = 0

  cast(separator[draw_hor_separator.counter])

  draw_hor_separator.counter += 1

def draw_row(row):

  cast(''.join('|{: ^5} '.format(num) if num > 0 else '| ' for num in row) + '|')

screen.clear()

cast('SCORE: ' + str(self.score))

if 0 != self.highscore:

  cast('HGHSCORE: ' + str(self.highscore))

for row in self.field:

  draw_hor_separator()

  draw_row(row)

draw_hor_separator()

if self.is_win():

  cast(win_string)

else:

  if self.is_gameover():

  cast(gameover_string)

  else:

  cast(help_string1)

cast(help_string2)

def spawn(self):

new_element = 4 if randrange(100) > 89 else 2

(i,j) = choice([(i,j) for i in range(self.width) for j in range(self.height) if self.field[i][j] == 0])

self.field[i][j] = new_element

def move_is_possible(self, direction):

def row_is_left_movable(row):

  def change(i): # true if there'll be change in i-th tile

  if row[i] == 0 and row[i + 1] != 0: # Move

  return True

  if row[i] != 0 and row[i + 1] == row[i]: # Merge

  return True

  return False

  return any(change(i) for i in range(len(row) - 1))

check = {}

check['Left'] = lambda field:    \

  any(row_is_left_movable(row) for row in field)

check['Right'] = lambda field:    \

  check['Left'](invert(field))

check['Up'] = lambda field:    \

  check['Left'](transpose(field))

check['Down'] = lambda field:    \

  check['Right'](transpose(field))

if direction in check:

  return check[direction](self.field)

else:

  return False

def main(stdscr):

def init():

#重置游戏棋盘

game_field.reset()

return 'Game'

def not_game(state):

#画出 GameOver 或者 Win 的界面

game_field.draw(stdscr)

#读取用户输入得到action,判断是重启游戏还是结束游戏

action = get_user_action(stdscr)

responses = defaultdict(lambda: state) #默认是当前状态,没有行为就会一直在当前界面循环

responses['Restart'], responses['Exit'] = 'Init', 'Exit' #对应不同的行为转换到不同的状态

return responses[action]

def game():

#画出当前棋盘状态

game_field.draw(stdscr)

#读取用户输入得到action

action = get_user_action(stdscr)

if action == 'Restart':

  return 'Init'

if action == 'Exit':

  return 'Exit'

if game_field.move(action): # move successful

  if game_field.is_win():

  return 'Win'

  if game_field.is_gameover():

  return 'Gameover'

return 'Game'

state_actions = {

  'Init': init,

  'Win': lambda: not_game('Win'),

  'Gameover': lambda: not_game('Gameover'),

  'Game': game

}

curses.use_default_colors()

game_field = GameField(win=32)

state = 'Init'

#状态机开始循环

while state != 'Exit':

state = state_actions[state]()

curses.wrapper(main)

任何疑问

更多学习课程以及资料 加Q群313074041领取

相关文章

网友评论

      本文标题:python—手把手教你实现2048小游戏

      本文链接:https://www.haomeiwen.com/subject/olipohtx.html