初步理解思想 想到哪,写到哪,写的比较乱 ~~
- 通过计算各个分类的熵,选取熵较小的作为一级分类
- 然后计算分类集合的熵,将原集合的熵减去现在的熵(信息增益)进行比较,取信息增益较大的进行分类
- 递归第二步,不断进行分类
- 训练算法建立树模型之后,使用模型进行分类预估
关键字
-
熵(信息熵):表示随机变量不确定性的度量。是一种信息的变量方式,表示信息的混乱度。也就说:信息越有序,信息熵越低。
image.png -
条件熵:
image.png
- 信息增益:在划分数据集前后发生的变化称为信息增益。表示得知特征X的信息而使得类Y的信息的不确定性减少的程度。特征A对训练数据集D的信息增益g(D,A),定义为集合D的经验熵H(D)与特征A给定条件下D的经验条件熵H(D|A)之差,即
g(D,A)=H(D)−H(D|A)
这个差又称为互信息。信息增益大的特征具有更强的分类能力。
决策树开发流程
- 收集数据:可以使用任何方法。
- 准备数据:树构造算法 (这里使用的是ID3算法,只适用于标称型数据, 这就是为什么数值型数据必须离散化。 还有其他的树构造算法,比如CART)
- 分析数据:可以使用任何方法,构造树完成之后,我们应该检查图形是否符合预期。
- 训练算法:构造树的数据结构。
- 测试算法:使用训练好的树计算错误率。
- 使用算法:此步骤可以适用于任何监督学习任务,而使用决策树可以更好地理解数据的内在含义。
'''构造决策树'''
def createBranch():
'''
此处运用了迭代的思想。 感兴趣可以搜索 迭代 recursion, 甚至是 dynamic programing。
'''
检测数据集中的所有数据的分类标签是否相同:
If so return 类标签
Else:
寻找划分数据集的最好特征(划分之后信息熵最小,也就是信息增益最大的特征)
划分数据集
创建分支节点
for 每个划分的子集
调用函数 createBranch (创建分支的函数)并增加返回结果到分支节点中
return 分支节点
代码
计算香农熵
def calcShannonEnt(dataSet):
"""calcShannonEnt(calculate Shannon entropy 计算给定数据集的香农熵)
Args:
dataSet 数据集
Returns:
返回 每一组feature下的某个分类下,香农熵的信息期望
"""
# -----------计算香农熵的第一种实现方式start--------------------------------------------------------------------------------
# 求list的长度,表示计算参与训练的数据量
numEntries = len(dataSet)
# 下面输出我们测试的数据集的一些信息
# 例如:<type 'list'> numEntries: 5 是下面的代码的输出
# print type(dataSet), 'numEntries: ', numEntries
# 计算分类标签label出现的次数
labelCounts = {}
# the the number of unique elements and their occurance
for featVec in dataSet:
# 将当前实例的标签存储,即每一行数据的最后一个数据代表的是标签
currentLabel = featVec[-1]
# 为所有可能的分类创建字典,如果当前的键值不存在,则扩展字典并将当前键值加入字典。每个键值都记录了当前类别出现的次数。
if currentLabel not in labelCounts.keys():
labelCounts[currentLabel] = 0
labelCounts[currentLabel] += 1
# print '-----', featVec, labelCounts
# 对于label标签的占比,求出label标签的香农熵
shannonEnt = 0.0
for key in labelCounts:
# 使用所有类标签的发生频率计算类别出现的概率。
prob = float(labelCounts[key])/numEntries
# log base 2
# 计算香农熵,以 2 为底求对数
shannonEnt -= prob * log(prob, 2)
# print '---', prob, prob * log(prob, 2), shannonEnt
# -----------计算香农熵的第一种实现方式end--------------------------------------------------------------------------------
# # -----------计算香农熵的第二种实现方式start--------------------------------------------------------------------------------
# # 统计标签出现的次数
# label_count = Counter(data[-1] for data in dataSet)
# # 计算概率
# probs = [p[1] / len(dataSet) for p in label_count.items()]
# # 计算香农熵
# shannonEnt = sum([-p * log(p, 2) for p in probs])
# # -----------计算香农熵的第二种实现方式end--------------------------------------------------------------------------------
return shannonEnt
按照给定特征划分数据集
将指定特征的特征值等于 value 的行剩下列作为子数据集。(根据信息增益进行分类)
def chooseBestFeatureToSplit(dataSet):
"""chooseBestFeatureToSplit(选择最好的特征)
Args:
dataSet 数据集
Returns:
bestFeature 最优的特征列
"""
# 求第一行有多少列的 Feature, 最后一列是label列嘛
numFeatures = len(dataSet[0]) - 1
# 数据集的原始信息熵
baseEntropy = calcShannonEnt(dataSet)
# 最优的信息增益值, 和最优的Featurn编号
bestInfoGain, bestFeature = 0.0, -1
# iterate over all the features
for i in range(numFeatures):
# create a list of all the examples of this feature
# 获取对应的feature下的所有数据
featList = [example[i] for example in dataSet]
# get a set of unique values
# 获取剔重后的集合,使用set对list数据进行去重
uniqueVals = set(featList)
# 创建一个临时的信息熵
newEntropy = 0.0
# 遍历某一列的value集合,计算该列的信息熵
# 遍历当前特征中的所有唯一属性值,对每个唯一属性值划分一次数据集,计算数据集的新熵值,并对所有唯一特征值得到的熵求和。
for value in uniqueVals:
subDataSet = splitDataSet(dataSet, i, value) # splitDataSet 将指定特征的特征值等于 value 的行剩下列作为子数据集
# 计算概率
prob = len(subDataSet)/float(len(dataSet))
# 计算信息熵
newEntropy += prob * calcShannonEnt(subDataSet)
# gain[信息增益]: 划分数据集前后的信息变化, 获取信息熵最大的值
# 信息增益是熵的减少或者是数据无序度的减少。最后,比较所有特征中的信息增益,返回最好特征划分的索引值。
infoGain = baseEntropy - newEntropy
print 'infoGain=', infoGain, 'bestFeature=', i, baseEntropy, newEntropy
if (infoGain > bestInfoGain):
bestInfoGain = infoGain
bestFeature = i
return bestFeature
创建树的函数
def createTree(dataSet, labels):
classList = [example[-1] for example in dataSet]
# 如果数据集的最后一列的第一个值出现的次数=整个集合的数量,也就说只有一个类别,就只直接返回结果就行
# 第一个停止条件:所有的类标签完全相同,则直接返回该类标签。
# count() 函数是统计括号中的值在list中出现的次数
if classList.count(classList[0]) == len(classList):
return classList[0]
# 如果数据集只有1列,那么最初出现label次数最多的一类,作为结果
# 第二个停止条件:使用完了所有特征,仍然不能将数据集划分成仅包含唯一类别的分组。
if len(dataSet[0]) == 1:
return majorityCnt(classList)
# 选择最优的列,得到最优列对应的label含义
bestFeat = chooseBestFeatureToSplit(dataSet)
# 获取label的名称
bestFeatLabel = labels[bestFeat]
# 初始化myTree
myTree = {bestFeatLabel: {}}
# 注:labels列表是可变对象,在PYTHON函数中作为参数时传址引用,能够被全局修改
# 所以这行代码导致函数外的同名变量被删除了元素,造成例句无法执行,提示'no surfacing' is not in list
del(labels[bestFeat])
# 取出最优列,然后它的branch做分类
featValues = [example[bestFeat] for example in dataSet]
uniqueVals = set(featValues)
for value in uniqueVals:
# 求出剩余的标签label
subLabels = labels[:]
# 遍历当前选择特征包含的所有属性值,在每个数据集划分上递归调用函数createTree()
myTree[bestFeatLabel][value] = createTree(splitDataSet(dataSet, bestFeat, value), subLabels)
# print 'myTree', value, myTree
return myTree
网友评论