美文网首页机器学习与深度学习
CVPR19-Deep Stacked Hierarchical

CVPR19-Deep Stacked Hierarchical

作者: Mezereon | 来源:发表于2020-08-09 22:17 被阅读0次

    CVPR19-Deep Stacked Hierarchical Multi-patch Network for Image Deblurring论文复现

    该工作主要关注于利用深度网络来实现图片去模糊,这里我们针对GoPro数据集进行论文的复现。

    文章给出了一种新的模型架构,来学习不同层次上的特征,并实现去模糊的效果。

    首先这里我们给出整体模型的架构


    模型架构

    如上图所示,整个模型由4个编码解码器构成,自底向上进行传播。

    可以看到,从最下面的输入开始,我们将模糊的图片进行输入,会将图片分成8个区域,每个区域过编码器4,得到8个中间的特征表示,将8个中间的特征表示进行两两连接得到4个特征表示,并输入到解码器4,进而得到4个输出。

    在输入到编码器3之前,会将图片分4块,然后将之前解码器4的输出加到图片的4块区域上,通过编码器3得到4个中间特征表示,这里我们将4个中间特征表示和先前两两连接的特征表示进行相加, 相加之后两两连接得到2个特征表示,并输入到解码器3。

    依此进行反复操作,直到最上层,将最终的输出和对应的清晰的图片进行均方误差MSE的计算,然后反向传播进行模型的训练。

    这里给出对应的pytorch代码

    import torch.nn as nn
    import torch
    from decoder import Decoder
    from encoder import Encoder
    
    class DMPHNModel(nn.Module):
        def __init__(self, level=4, device='cuda'):
            super(DMPHNModel, self).__init__()
            self.encoder1 = Encoder().to(device)
            self.decoder1 = Decoder().to(device)
            self.encoder2 = Encoder().to(device)
            self.decoder2 = Decoder().to(device)
            self.encoder3 = Encoder().to(device)
            self.decoder3 = Decoder().to(device)
            self.encoder4 = Encoder().to(device)
            self.decoder4 = Decoder().to(device)
            self.level = level
    
        def forward(self, x):
            # x structure (B, C, H, W)
            # from bottom to top
            tmp_out = []
            tmp_feature = []
            for i in range(self.level):
                currentlevel = self.level - i - 1  # 3,2,1,0
                # For level 4(i.e. i = 3), we need to divide the picture into 2^i parts without any overlaps
                num_parts = 2 ** currentlevel
                rs = []
                if currentlevel == 3:
                    rs = self.divide(x, 2, 4)
                    for j in range(num_parts):
                        tmp_feature.append(self.encoder4(rs[j]))  # each feature is [B, C, H, W]
                    # combine the output
                    tmp_feature = self.combine(tmp_feature, comb_dim=3)
                    for j in range(int(num_parts/2)):
                        tmp_out.append(self.decoder4(tmp_feature[j]))
                elif currentlevel == 2:
                    rs = self.divide(x, 2, 2)
                    for j in range(len(rs)):
                        rs[j] = rs[j] + tmp_out[j]
                        tmp_feature[j] = tmp_feature[j] + self.encoder3(rs[j])
                    tmp_feature = self.combine(tmp_feature, comb_dim=2)
                    tmp_out = []
                    for j in range(int(num_parts/2)):
                        tmp_out.append(self.decoder3(tmp_feature[j]))
                elif currentlevel == 1:
                    rs = self.divide(x, 1, 2)
                    for j in range(len(rs)):
                        rs[j] = rs[j] + tmp_out[j]
                        tmp_feature[j] = tmp_feature[j] + self.encoder2(rs[j])
                    tmp_feature = self.combine(tmp_feature, comb_dim=3)
                    tmp_out = []
                    for j in range(int(num_parts/2)):
                        tmp_out.append(self.decoder2(tmp_feature[j]))
                else:
                    x += tmp_out[0]
                    x = self.decoder1(self.encoder1(x)+tmp_feature[0])
            return x
        
        def combine(self, x, comb_dim=2):
            """[将数组逐两个元素进行合并并且返回]
    
            Args:
                x ([tensor array]): [输出的tensor数组]
                comb_dim (int, optional): [合并的维度,从高度合并则是2,宽度合并则是3]. Defaults to 2.
    
            Returns:
                [tensor array]: [合并后的数组,长度变为一半]
            """        
            rs = []
            for i in range(int(len(x)/2)):
                rs.append(torch.cat((x[2*i], x[2*i+1]), dim=comb_dim))
            return rs
    
        def divide(self, x, h_parts_num, w_parts_num):
            """ 该函数将BxHxWxC的输入进行切分, 本质上是对每一张图片进行分块
                这里直接针对多维数组进行操作
    
            Args:
                x (Torch Tensor): input torch tensor (e.g. [Batchsize, Channels, Heights, Width])
                h_parts_num (int): The number of divided parts on heights
                w_parts_num (int): The number of divided parts on width
    
            Returns:
                [A list]: h_parts_num x w_parts_num 's tensor list, each one has [B, Channels, H/h_parts_num, W/w_parts_num] structure
            """                
            rs = []
            for i in range(h_parts_num):
                tmp = x.chunk(h_parts_num, dim=2)[i]
                for j in range(w_parts_num):
                    rs.append(tmp.chunk(w_parts_num,dim=3)[j])
            return rs
    

    上述代码是整个模型的输入流程,我们还需要对其中的编码解码器的结构进行实现
    这里给出论文中的结构描述

    编码器和解码器

    这里论文给出的图片有些错误,解码器的最后一层应该是[32,3,3,1],不然无法输出3个通道的图片。

    灰色块的ReLU激活函数,块和块之间的有向连接是残差连接,是先做卷积再做加法

    直接给出对应的编码器和解码器的代码

    import torch.nn as nn
    import torch.nn.functional as F
    
    class Encoder(nn.Module):
        def __init__(self):
            super(Encoder, self).__init__()
            self.conv1 = nn.Conv2d(3, 32, kernel_size=3, padding=1, stride=1)
            self.conv2 = nn.Conv2d(32, 32, kernel_size=3, padding=1, stride=1)
            self.conv3 = nn.Conv2d(32, 32, kernel_size=3, padding=1, stride=1)   
            self.conv4 = nn.Conv2d(32, 32, kernel_size=3, padding=1, stride=1)
            self.conv5 = nn.Conv2d(32, 32, kernel_size=3, padding=1, stride=1)
            self.conv6 = nn.Conv2d(32, 64, kernel_size=3, padding=1, stride=2)
            self.conv7 = nn.Conv2d(64, 64, kernel_size=3, padding=1, stride=1)
            self.conv8 = nn.Conv2d(64, 64, kernel_size=3, padding=1, stride=1)
            self.conv9 = nn.Conv2d(64, 64, kernel_size=3, padding=1, stride=1)
            self.conv10 = nn.Conv2d(64, 64, kernel_size=3, padding=1, stride=1)
            self.conv11 = nn.Conv2d(64, 128, kernel_size=3, padding=1, stride=2)
            self.conv12 = nn.Conv2d(128, 128, kernel_size=3, padding=1, stride=1)
            self.conv13 = nn.Conv2d(128, 128, kernel_size=3, padding=1, stride=1) 
            self.conv14 = nn.Conv2d(128, 128, kernel_size=3, padding=1, stride=1) 
            self.conv15 = nn.Conv2d(128, 128, kernel_size=3, padding=1, stride=1)           
            
        def forward(self, x):
            tmp = self.conv1(x)
            x1 = F.relu(self.conv2(tmp))
            x1 = self.conv3(x1)
            tmp = x1 + tmp  # residual link
            x1 = F.relu(self.conv4(tmp))
            x1 = self.conv5(x1)
            x1 = x1 + tmp  # residual link
            tmp = self.conv6(x1)
            x1 = F.relu(self.conv7(tmp))
            x1 = self.conv8(x1)
            tmp = x1 + tmp  # residual link
            x1 = F.relu(self.conv9(tmp))
            x1 = self.conv10(x1)
            x1 = x1 + tmp  # residual link
            tmp = self.conv11(x1)
            x1 = F.relu(self.conv12(tmp))
            x1 = self.conv13(x1)
            tmp = x1 + tmp  # residual link
            x1 = F.relu(self.conv14(tmp))
            x1 = self.conv15(x1)
            x1 = x1 + tmp  # residual link
            return x1
    

    解码器的代码为:

    import torch.nn as nn
    import torch.nn.functional as F
    
    class Decoder(nn.Module):
        def __init__(self):
            super(Decoder, self).__init__()
            self.conv1 = nn.Conv2d(128, 128, kernel_size=3, padding=1, stride=1)
            self.conv2 = nn.Conv2d(128, 128, kernel_size=3, padding=1, stride=1)
            self.conv3 = nn.Conv2d(128, 128, kernel_size=3, padding=1, stride=1)
            self.conv4 = nn.Conv2d(128, 128, kernel_size=3, padding=1, stride=1)
            self.deconv1 = nn.ConvTranspose2d(128, 64, kernel_size=4, padding=1, stride=2)
            self.conv5 = nn.Conv2d(64, 64, kernel_size=3, padding=1, stride=1)
            self.conv6 = nn.Conv2d(64, 64, kernel_size=3, padding=1, stride=1)
            self.conv7 = nn.Conv2d(64, 64, kernel_size=3, padding=1, stride=1)
            self.conv8 = nn.Conv2d(64, 64, kernel_size=3, padding=1, stride=1)
            self.deconv2 = nn.ConvTranspose2d(64, 32, kernel_size=4, padding=1, stride=2)
            self.conv9 = nn.Conv2d(32, 32, kernel_size=3, padding=1, stride=1)
            self.conv10 = nn.Conv2d(32, 32, kernel_size=3, padding=1, stride=1)
            self.conv11 = nn.Conv2d(32, 32, kernel_size=3, padding=1, stride=1)
            self.conv12 = nn.Conv2d(32, 32, kernel_size=3, padding=1, stride=1)
            self.conv13 = nn.Conv2d(32, 3, kernel_size=3, padding=1, stride=1)
        
        def forward(self, x):
            tmp = x
            x1 = F.relu(self.conv1(tmp))
            x1 = self.conv2(x1)
            tmp = x1 + tmp  # residual link
            x1 = F.relu(self.conv3(tmp))
            x1 = self.conv4(x1)
            x1 = x1 + tmp  # residual link
            tmp = self.deconv1(x1)
            x1 = F.relu(self.conv5(tmp))
            x1 = self.conv6(x1)
            tmp = x1 + tmp  # residual link
            x1 = F.relu(self.conv7(tmp))
            x1 = self.conv8(x1)
            x1 = x1 + tmp  # residual link
            tmp = self.deconv2(x1)
            x1 = F.relu(self.conv9(tmp))        
            x1 = self.conv10(x1)
            tmp = x1 + tmp  # residual link
            x1 = F.relu(self.conv11(tmp))
            x1 = self.conv12(x1)
            x1 = x1 + tmp  # residual link
            return self.conv13(x1)
    

    这里我训练了1500个epoch,lr设置为1e-4,batch_size=6。训练完的效果如下图所示

    Input Output
    input 在这里插入图片描述

    完整的训练代码我已经放到了github上,欢迎大家star和issue,链接如下:
    github链接

    相关文章

      网友评论

        本文标题:CVPR19-Deep Stacked Hierarchical

        本文链接:https://www.haomeiwen.com/subject/onyezftx.html