美文网首页单细胞学习
单细胞测序分析R包Seurat质量控制小提琴图QC VlnPlo

单细胞测序分析R包Seurat质量控制小提琴图QC VlnPlo

作者: 摸爬滚打的生信菜鸟Cici | 来源:发表于2020-07-03 11:12 被阅读0次

    单细胞测序分析预处理结束,拿到原始count或者TPM文件后,我们到了下游分析处理环节。

    Seurat包是单细胞入门普遍使用的下游分析R包,功能全面,官方网址:https://satijalab.org/seurat/

    在一开始的质量控制QC步骤中,The percentage of reads that map to the mitochondrial genome 是一项QC标准,因为Low-quality / dying cells often exhibit extensive mitochondrial contamination

    所以我们要挑出 MT genome,以下是官方给出的代码和小提琴图。

    library(Seurat)
    pbmc[["percent.mt"]] <- PercentageFeatureSet(pbmc, pattern = "^MT-")
    # Visualize QC metrics as a violin plot
    VlnPlot(pbmc, features = c("nFeature_RNA", "nCount_RNA", "percent.mt"), ncol = 3)
    
    官网 VlnPlot.png

    我照着它做,结果MT都是0。

    data.object[["percent.mt"]] <- PercentageFeatureSet(data.object, pattern = "^MT-")
    VlnPlot(data.object, features = c("nFeature_RNA", "nCount_RNA", "percent.mt"), ncol = 3)
    Warning message:
    In SingleExIPlot(type = type, data = data[, x, drop = FALSE], idents = idents,  :
      All cells have the same value of percent.mt.
    
    wrong.png

    仔细找了问题后,发现是annotation不统一,我的genome不是以‘MT-’开头的,修改后成功画出类似官网的图。

    data.object[["percent.mt"]] <- PercentageFeatureSet(data.object, pattern = "^MT")
    VlnPlot(data.object, features = c("nFeature_RNA", "nCount_RNA", "percent.mt"), ncol = 3)
    
    2.png

    相关文章

      网友评论

        本文标题:单细胞测序分析R包Seurat质量控制小提琴图QC VlnPlo

        本文链接:https://www.haomeiwen.com/subject/oqajqktx.html