美文网首页
Android消息机制全面解析

Android消息机制全面解析

作者: 怪咖大蜀 | 来源:发表于2018-08-30 15:22 被阅读0次

    Android消息机制可以说是众人皆知了,作为一个Android开发者没用过是不可能的。其原理相对是一个比较简单的内容。本篇文章我们来进行一个简单的梳理。在消息机制中我们主要有下面几块内容需要掌握。

    • Handler:一个发送和处理消息的类,其依赖于Looper构建,如果他所在的线程中没有Looper就会出现异常。而消息的处理也是在looper所在的线程。
    • Looper,一个无限循环器,循环去拿MessageQueue中的message。
    • MessageQueue,消息队列。单链表形式存储Message。
    • ThreadLoacal:此内容可查看另一篇文章:ThreadLocal全面解析。
      1、首先我们来看消息队列MessageQueue,它提供了插入消息,和拿出消息的两个方法。分别是enqueueMessage,next
        boolean enqueueMessage(Message msg, long when) {
            if (msg.target == null) {
                throw new IllegalArgumentException("Message must have a target.");
            }
            if (msg.isInUse()) {
                throw new IllegalStateException(msg + " This message is already in use.");
            }
    
            synchronized (this) {
                if (mQuitting) {
                    IllegalStateException e = new IllegalStateException(
                            msg.target + " sending message to a Handler on a dead thread");
                    Log.w(TAG, e.getMessage(), e);
                    msg.recycle();
                    return false;
                }
    
                msg.markInUse();
                msg.when = when;
                Message p = mMessages;
                boolean needWake;
                if (p == null || when == 0 || when < p.when) {
                    // New head, wake up the event queue if blocked.
                    msg.next = p;
                    mMessages = msg;
                    needWake = mBlocked;
                } else {
                    // Inserted within the middle of the queue.  Usually we don't have to wake
                    // up the event queue unless there is a barrier at the head of the queue
                    // and the message is the earliest asynchronous message in the queue.
                    needWake = mBlocked && p.target == null && msg.isAsynchronous();
                    Message prev;
                    for (;;) {
                        prev = p;
                        p = p.next;
                        if (p == null || when < p.when) {
                            break;
                        }
                        if (needWake && p.isAsynchronous()) {
                            needWake = false;
                        }
                    }
                    msg.next = p; // invariant: p == prev.next
                    prev.next = msg;
                }
    
                // We can assume mPtr != 0 because mQuitting is false.
                if (needWake) {
                    nativeWake(mPtr);
                }
            }
            return true;
        }
    

    根据这个方法我们可以看到,我们的MessageQueue是以单链表形式存储我们的消息的,并且,当我们的消息都是立即发送的时候,会把消息存储在链表第一个位置,当我们发送延时消息的时候,会根据延时的时间大小将我们的消息存放在链表中。时间小的在链表前面。

        Message next() {
            // Return here if the message loop has already quit and been disposed.
            // This can happen if the application tries to restart a looper after quit
            // which is not supported.
            final long ptr = mPtr;
            if (ptr == 0) {
                return null;
            }
    
            int pendingIdleHandlerCount = -1; // -1 only during first iteration
            int nextPollTimeoutMillis = 0;
            for (;;) {
                if (nextPollTimeoutMillis != 0) {
                    Binder.flushPendingCommands();
                }
    
                nativePollOnce(ptr, nextPollTimeoutMillis);
    
                synchronized (this) {
                    // Try to retrieve the next message.  Return if found.
                    final long now = SystemClock.uptimeMillis();
                    Message prevMsg = null;
                    Message msg = mMessages;
                    if (msg != null && msg.target == null) {
                        // Stalled by a barrier.  Find the next asynchronous message in the queue.
                        do {
                            prevMsg = msg;
                            msg = msg.next;
                        } while (msg != null && !msg.isAsynchronous());
                    }
                    if (msg != null) {
                        if (now < msg.when) {
                            // Next message is not ready.  Set a timeout to wake up when it is ready.
                            nextPollTimeoutMillis = (int) Math.min(msg.when - now, Integer.MAX_VALUE);
                        } else {
                            // Got a message.
                            mBlocked = false;
                            if (prevMsg != null) {
                                prevMsg.next = msg.next;
                            } else {
                                mMessages = msg.next;
                            }
                            msg.next = null;
                            if (DEBUG) Log.v(TAG, "Returning message: " + msg);
                            msg.markInUse();
                            return msg;
                        }
                    } else {
                        // No more messages.
                        nextPollTimeoutMillis = -1;
                    }
    
                    // Process the quit message now that all pending messages have been handled.
                    if (mQuitting) {
                        dispose();
                        return null;
                    }
    
                    // If first time idle, then get the number of idlers to run.
                    // Idle handles only run if the queue is empty or if the first message
                    // in the queue (possibly a barrier) is due to be handled in the future.
                    if (pendingIdleHandlerCount < 0
                            && (mMessages == null || now < mMessages.when)) {
                        pendingIdleHandlerCount = mIdleHandlers.size();
                    }
                    if (pendingIdleHandlerCount <= 0) {
                        // No idle handlers to run.  Loop and wait some more.
                        mBlocked = true;
                        continue;
                    }
    
                    if (mPendingIdleHandlers == null) {
                        mPendingIdleHandlers = new IdleHandler[Math.max(pendingIdleHandlerCount, 4)];
                    }
                    mPendingIdleHandlers = mIdleHandlers.toArray(mPendingIdleHandlers);
                }
    
                // Run the idle handlers.
                // We only ever reach this code block during the first iteration.
                for (int i = 0; i < pendingIdleHandlerCount; i++) {
                    final IdleHandler idler = mPendingIdleHandlers[i];
                    mPendingIdleHandlers[i] = null; // release the reference to the handler
    
                    boolean keep = false;
                    try {
                        keep = idler.queueIdle();
                    } catch (Throwable t) {
                        Log.wtf(TAG, "IdleHandler threw exception", t);
                    }
    
                    if (!keep) {
                        synchronized (this) {
                            mIdleHandlers.remove(idler);
                        }
                    }
                }
    
                // Reset the idle handler count to 0 so we do not run them again.
                pendingIdleHandlerCount = 0;
    
                // While calling an idle handler, a new message could have been delivered
                // so go back and look again for a pending message without waiting.
                nextPollTimeoutMillis = 0;
            }
        }
    

    通过next方法源码我们可以看出,是一个无线循环的方法,一直去消息队列中取消息,如果没有消息将会阻塞在这里,有消息了就会跳出循环,返回消息并把消息从消息队列中删除。

    • Looper消息循环,我们知道如果我们在一个子线程中创建Handler,如果在这个线程中没有调用 Looper.prepare();的话会发生"Can't create handler inside thread that has not called Looper.prepare()"的异常,因为Handler是依赖Looper存在的,但是为什么我们在主线程中创建Handler没有调用 Looper.prepare();就可以呢?那是因为我们的系统在AcitivityThread的Main方法中默认调用了Looper.prepareMainLooper();其原理也是调用了prepare方法。
        private static void prepare(boolean quitAllowed) {
            if (sThreadLocal.get() != null) {
                throw new RuntimeException("Only one Looper may be created per thread");
            }
            sThreadLocal.set(new Looper(quitAllowed));
        }
    

    在这个方法中我们可以看到 它创建了一个Looper实例放在了我们的ThreadLocal中。

        private Looper(boolean quitAllowed) {
            mQueue = new MessageQueue(quitAllowed);
            mThread = Thread.currentThread();
        }
    

    而我们创建Looper的同时还创建了我们的MessageQueue.所以我们子线程的消息队列和主线程的消息队列不是同一个。Looper也不是同一个。
    我们知道当我们执行了Looper.prepare();方法创建了Looper之后,它并没有真正的开始工作,还没有循环起来去拿队列中的消息进行处理。我们还需要调用Looper.loop();方法。

        public static void loop() {
            final Looper me = myLooper();
            if (me == null) {
                throw new RuntimeException("No Looper; Looper.prepare() wasn't called on this thread.");
            }
            final MessageQueue queue = me.mQueue;
    
            // Make sure the identity of this thread is that of the local process,
            // and keep track of what that identity token actually is.
            Binder.clearCallingIdentity();
            final long ident = Binder.clearCallingIdentity();
    
            for (;;) {
                Message msg = queue.next(); // might block
                if (msg == null) {
                    // No message indicates that the message queue is quitting.
                    return;
                }
    
                // This must be in a local variable, in case a UI event sets the logger
                final Printer logging = me.mLogging;
                if (logging != null) {
                    logging.println(">>>>> Dispatching to " + msg.target + " " +
                            msg.callback + ": " + msg.what);
                }
    
                final long slowDispatchThresholdMs = me.mSlowDispatchThresholdMs;
    
                final long traceTag = me.mTraceTag;
                if (traceTag != 0 && Trace.isTagEnabled(traceTag)) {
                    Trace.traceBegin(traceTag, msg.target.getTraceName(msg));
                }
                final long start = (slowDispatchThresholdMs == 0) ? 0 : SystemClock.uptimeMillis();
                final long end;
                try {
                    msg.target.dispatchMessage(msg);
                    end = (slowDispatchThresholdMs == 0) ? 0 : SystemClock.uptimeMillis();
                } finally {
                    if (traceTag != 0) {
                        Trace.traceEnd(traceTag);
                    }
                }
                if (slowDispatchThresholdMs > 0) {
                    final long time = end - start;
                    if (time > slowDispatchThresholdMs) {
                        Slog.w(TAG, "Dispatch took " + time + "ms on "
                                + Thread.currentThread().getName() + ", h=" +
                                msg.target + " cb=" + msg.callback + " msg=" + msg.what);
                    }
                }
    
                if (logging != null) {
                    logging.println("<<<<< Finished to " + msg.target + " " + msg.callback);
                }
    
                // Make sure that during the course of dispatching the
                // identity of the thread wasn't corrupted.
                final long newIdent = Binder.clearCallingIdentity();
                if (ident != newIdent) {
                    Log.wtf(TAG, "Thread identity changed from 0x"
                            + Long.toHexString(ident) + " to 0x"
                            + Long.toHexString(newIdent) + " while dispatching to "
                            + msg.target.getClass().getName() + " "
                            + msg.callback + " what=" + msg.what);
                }
    
                msg.recycleUnchecked();
            }
        }
    

    从loop方法中我们可以看出loop方法是一个无线循环的方法,在循环里面会调用消息队列的next方法获取消息,并调用msg.target.dispatchMessage(msg);处理消息,而跳出循环的条件是msg==null,但是通过我们之前对消息队列next方法的分析,我们知道,next方法也是一个无线循环的方法,并且在消息队列中没有消息的时候一直循环去拿消息,直到拿到消息。所以loop方法会阻塞在那里,等待消息队列返回消息。那么什么时候next才能返回null呢。其实当我们loop调用quit()或者quitSafely()。就会调用我们的消息队列的quit()方法,这时,消息队列返回消息就会是null。
    我们来看一下这两个方法

    class Looper
        public void quit() {
            mQueue.quit(false);
        }
    
        public void quitSafely() {
            mQueue.quit(true);
        }
    
    class MessageQueue
        void quit(boolean safe) {
            if (!mQuitAllowed) {
                throw new IllegalStateException("Main thread not allowed to quit.");
            }
            synchronized (this) {
                if (mQuitting) {
                    return;
                }
                mQuitting = true;
                if (safe) {
                    removeAllFutureMessagesLocked();
                } else {
                    removeAllMessagesLocked();
                }
                // We can assume mPtr != 0 because mQuitting was previously false.
                nativeWake(mPtr);
            }
        }
    
    

    从上面的代码中我们可以看出当我们Looper进行quit或者quitSafely的时候实际上是调用MessageQueue的removeAllMessagesLocked()和removeAllFutureMessagesLocked();

    class MessageQueue
        private void removeAllMessagesLocked() {
            Message p = mMessages;
            while (p != null) {
                Message n = p.next;
                p.recycleUnchecked();
                p = n;
            }
            mMessages = null;
        }
    
        private void removeAllFutureMessagesLocked() {
            final long now = SystemClock.uptimeMillis();
            Message p = mMessages;
            if (p != null) {
                if (p.when > now) {
                    removeAllMessagesLocked();
                } else {
                    Message n;
                    for (;;) {
                        n = p.next;
                        if (n == null) {
                            return;
                        }
                        if (n.when > now) {
                            break;
                        }
                        p = n;
                    }
                    p.next = null;
                    do {
                        p = n;
                        n = p.next;
                        p.recycleUnchecked();
                    } while (n != null);
                }
            }
        }
     class Message
        void recycleUnchecked() {
            // Mark the message as in use while it remains in the recycled object pool.
            // Clear out all other details.
            flags = FLAG_IN_USE;
            what = 0;
            arg1 = 0;
            arg2 = 0;
            obj = null;
            replyTo = null;
            sendingUid = -1;
            when = 0;
            target = null;
            callback = null;
            data = null;
    
            synchronized (sPoolSync) {
                if (sPoolSize < MAX_POOL_SIZE) {
                    next = sPool;
                    sPool = this;
                    sPoolSize++;
                }
            }
        }
    

    通过上面的两个方法的源码我们可以看出,Looper的quit方法会直接将我们消息队列中的消息调用recycleUnchecked()方法将所有消息的内容消除,导致我们的消息无法进行处理。并且,不允许再往消息队列中插入新的消息,直到我们消息队列中没有消息之后,MessageQueue的next就会返回null,然后我们的Looper就会停止循环,而我们的removeAllFutureMessagesLocked是把所有的消息和当前时间进行比较,来比较是否是延迟消息如果是延迟消息,将之后的延迟消息的消息内容制空。

    • Handler,发送和处理消息的方法。其中有很多可以发送消息的方法。
      public final boolean post(Runnable r);
      public final boolean postAtTime(Runnable r, long uptimeMillis);
      public final boolean postAtTime(Runnable r, Object token, long uptimeMillis);
      public final boolean postDelayed(Runnable r, long delayMillis);
      public final boolean sendMessage(Message msg);
      public final boolean sendEmptyMessage(int what);
      public final boolean sendEmptyMessageDelayed(int what, long delayMillis) ;
      public final boolean sendEmptyMessageAtTime(int what, long uptimeMillis);
      public final boolean sendMessageDelayed(Message msg, long delayMillis);
      public boolean sendMessageAtTime(Message msg, long uptimeMillis);
      发送消息的方法有很多,但是通过源码我们可以看出他们是有关系的,比如post方法都会默认调用sendMessageDelayed方法,而sendMessageDelayed方法又会默认去调用sendEmptyMessageAtTime方法。sendMessageDelayed和sendEmptyMessageAtTime方法的区别并不大,sendMessageDelayed的延时事件参数是一个相对时间,相对于现在1000毫秒,而sendEmptyMessageAtTime的参数是一个绝对时间,是以系统开机时间开始(去除休眠时间)的一个绝对时间。
        public final boolean sendMessageDelayed(Message msg, long delayMillis)
        {
            if (delayMillis < 0) {
                delayMillis = 0;
            }
            return sendMessageAtTime(msg, SystemClock.uptimeMillis() + delayMillis);
        }
    

    而Post系列方法和send系列方法的区别为 post系列方法参数为Runnable他会创建一个Massage并把runnable复制给msg.callback,并且将我们的发送消息的Handler复制给我们的Message的target 参数。通过发送消息的源码我们可以看出最终会调用消息队列的enqueueMessage方法将消息放到消息队列当中,通过上面我们对Looper的分析我们知道,当Looper取到消息的时候会调用msg.target.dispatchMessage(msg);来处理消息,其实就是调用我们发送消息的Handler的dispatchMessage方法来处理消息。

     public void dispatchMessage(Message msg) {
            if (msg.callback != null) {
                handleCallback(msg);
            } else {
                if (mCallback != null) {
                    if (mCallback.handleMessage(msg)) {
                        return;
                    }
                }
                handleMessage(msg);
            }
        }
    

    通过上面的方法我们可以看出,当消息有CallBack时候,就会执行消息的CallBack,如果没有将会查看mCallback,mCallback其实就是我们创建Handler的时候Handler构造方法中的Runnable,如果mCallback返回true的话我们Handler的handleMessage方法就不会执行,如果mCallback返回为false的话我们的handleMessage就会执行了。

    相关文章

      网友评论

          本文标题:Android消息机制全面解析

          本文链接:https://www.haomeiwen.com/subject/oqhkwftx.html