美文网首页
笔记---Tensorflow 搭建自己的神经网络 (莫烦 Py

笔记---Tensorflow 搭建自己的神经网络 (莫烦 Py

作者: Shine_Zhang | 来源:发表于2019-07-21 10:58 被阅读0次

    Tensorflow 搭建自己的神经网络 (莫烦 Python 教程)

    1.例子1

    Code:

    import tensorflow as tf
    import numpy as np
    # create data
    x_data = np.random.rand(100).astype(np.float32)
    y_data = x_data * 0.1 + 0.3
    ### create tensorflow sturcture start ###
    Weights = tf.Variable(tf.random_uniform([1],-1.0,1.0))
    biases = tf.Variable(tf.zeros([1]))
    y = Weights * x_data + biases
    loss = tf.reduce_mean(tf.square(y - y_data))
    optimizer = tf.train.GradientDescentOptimizer(0.5)
    train = optimizer.minimize(loss)
    init = tf.initialize_all_variables()
    ### create tensorflow sturcture start ###
    sess = tf.Session()
    sess.run(init)
    for step in range(201):
        sess.run(train)
        if step % 20 == 0:
            print(step,sess.run(Weights),sess.run(biases))
    

    Result:

    0 [-0.42743844] [0.8432702]
    20 [-0.04861213] [0.38219658]
    40 [0.06516342] [0.31926793]
    60 [0.09183386] [0.30451667]
    80 [0.09808574] [0.30105877]
    100 [0.09955128] [0.3002482]
    120 [0.09989484] [0.3000582]
    140 [0.09997535] [0.30001363]
    160 [0.09999423] [0.3000032]
    180 [0.09999865] [0.30000076]
    200 [0.0999997] [0.3000002]
    

    2.Session的用法

    Code:

    import tensorflow as tf
    import numpy as np
    #创建矩阵
    matrix1 = tf.constant([[3,3]])
    matrix2 = tf.constant([[2],
                           [2]])
    #矩阵相乘
    product = tf.matmul(matrix1,matrix2) 
    
    # method 1
    sess = tf.Session()
    print("method1:",sess.run(product))
    sess.close()
    
    # method2
    with tf.Session() as sess:
        print("method2:",sess.run(product))
        
    

    Result:

    method1: [[12]]
    method2: [[12]]
    

    3.Variable 变量

    Code:

    import tensorflow as tf
    #创建变量,赋值0,变量名:counter
    state = tf.Variable(0,name='counter')
    #创建常量
    one = tf.constant(1)
    #相加
    new_value = tf.add(state,one)
    #将new_value的值传给state
    update = tf.assign(state,new_value)
    #初始化变量
    init = tf.initialize_all_variables()# must have if define variable
    
    with tf.Session() as sess:
        sess.run(init)
        for _ in range(3):
            sess.run(update)
            print(sess.run(state))
    

    Result:

    1
    2
    3
    

    相关文章

      网友评论

          本文标题:笔记---Tensorflow 搭建自己的神经网络 (莫烦 Py

          本文链接:https://www.haomeiwen.com/subject/osdmlctx.html