相关文章链接:
1. Android Framework - 学习启动篇
2. 源码阅读分析 - Window底层原理与系统架构
相关源码文件:
/frameworks/base/core/java/android/view/ViewRootImpl.java
/frameworks/base/core/java/android/view/Choreographer.java
/frameworks/base/core/java/android/view/DisplayEventReceiver.java
/frameworks/base/core/jni/android_view_DisplayEventReceiver.cpp
/frameworks/native/libs/gui/DisplayEventReceiver.cpp
/frameworks/native/services/surfaceflinger/SurfaceFlinger.cpp
/frameworks/native/services/surfaceflinger/EventThread.cpp
/frameworks/native/libs/gui/BitTube.cpp
1. 梳理概述
在开始阅读文章前,希望大家能认真思考几个问题:
- 界面卡顿的原理是怎样的?
- ViewRootImpl 与 SurfaceFlinger 是怎么通信的?
- invalidate / requestLayout 会不会立马刷新屏幕?
- SurfaceView / GLSurfaceView 的底层实现原理?
搞 Android 搞了几年,我们对 VSync 信号应该会有一些了解,但是未必真正能理解其具体原理。比如 VSync 信号是从哪里来的?发到哪里去?有什么作用?本文主要讲解发到哪里去,至于从哪里来的大家可以看看之前的内容。
2. 请求 VSync 信号
如果我们的界面需要发生变化,一般都会来到 ViewRootImpl 的 requestLayout 方法,有可能是手动触发的也有可能是被动触发的,在这个方法里面我们会主动去请求接收 VSync 信号,当下一次 VSync 信号的来的时候会主动回掉回来,然后才开始真正的绘制流程。
@Override
public void requestLayout() {
if (!mHandlingLayoutInLayoutRequest) {
checkThread();
mLayoutRequested = true;
scheduleTraversals();
}
}
void scheduleTraversals() {
if (!mTraversalScheduled) {
mTraversalScheduled = true;
// 插入一条消息屏障
mTraversalBarrier = mHandler.getLooper().getQueue().postSyncBarrier();
// post 一个 Callback
mChoreographer.postCallback(Choreographer.CALLBACK_TRAVERSAL, mTraversalRunnable, null);
}
}
private void postCallbackDelayedInternal(int callbackType, Object action, Object token, long delayMillis) {
synchronized (mLock) {
...
if (dueTime <= now) {
scheduleFrameLocked(now);
} else {
...
}
}
}
private void scheduleFrameLocked(long now) {
if (!mFrameScheduled) {
mFrameScheduled = true;
if (USE_VSYNC) {
// 是否在 Choreographer 的工作线程
if (isRunningOnLooperThreadLocked()) {
scheduleVsyncLocked();
} else {
Message msg = mHandler.obtainMessage(MSG_DO_SCHEDULE_VSYNC);
msg.setAsynchronous(true);
mHandler.sendMessageAtFrontOfQueue(msg);
}
} else {
...
}
}
}
// 请求接收下一次 VSync 信号
private void scheduleVsyncLocked() {
mDisplayEventReceiver.scheduleVsync();
}
由上面的源码可以看出,每一次调用 requestLayout 方法,都会主动调用 scheduleVsync 方法来接收下一次的 VSync 信号。也就是说在下一次 VSync 信号来之前,就算连续调用 n 次的 requestLayout 方法,也并不会触发刷新绘制流程。
3. 接收 VSync 信号
应用 App 请求了要接收下一次的 VSync 信号,那么 SurfaceFlinger 服务怎么把 VSync 信号,发给我们的应用 App ?这个得从 DisplayEventReceiver 的初始化入手,涉及到跨进程通信也涉及到 Native 层源码。
public DisplayEventReceiver(Looper looper) {
...
// nativeInit
mReceiverPtr = nativeInit(new WeakReference<DisplayEventReceiver>(this), mMessageQueue);
}
static jlong nativeInit(JNIEnv* env, jclass clazz, jobject receiverWeak, jobject messageQueueObj) {
sp<NativeDisplayEventReceiver> receiver = new NativeDisplayEventReceiver(env, receiverWeak, messageQueue);
// 初始化方法
status_t status = receiver->initialize();
receiver->incStrong(gDisplayEventReceiverClassInfo.clazz); // retain a reference for the object
return reinterpret_cast<jlong>(receiver.get());
}
status_t NativeDisplayEventReceiver::initialize() {
// 接收端的 fd 添加到 Looper
int rc = mMessageQueue->getLooper()->addFd(mReceiver.getFd(), 0, Looper::EVENT_INPUT,this, NULL);
return OK;
}
// 跨进程创建一个 mEventConnection 对象
DisplayEventReceiver::DisplayEventReceiver() {
sp<ISurfaceComposer> sf(ComposerService::getComposerService());
if (sf != NULL) {
mEventConnection = sf->createDisplayEventConnection();
if (mEventConnection != NULL) {
mDataChannel = mEventConnection->getDataChannel();
}
}
}
// 获取接收端的 fd
int DisplayEventReceiver::getFd() const {
if (mDataChannel == NULL)
return NO_INIT;
return mDataChannel->getFd();
}
// VSync 信号来会回调到这个方法
int NativeDisplayEventReceiver::handleEvent(int receiveFd, int events, void* data) {
// Drain all pending events, keep the last vsync.
nsecs_t vsyncTimestamp;
int32_t vsyncDisplayId;
uint32_t vsyncCount;
if (processPendingEvents(&vsyncTimestamp, &vsyncDisplayId, &vsyncCount)) {
mWaitingForVsync = false;
dispatchVsync(vsyncTimestamp, vsyncDisplayId, vsyncCount);
}
return 1; // keep the callback
}
void NativeDisplayEventReceiver::dispatchVsync(nsecs_t timestamp, int32_t id, uint32_t count) {
JNIEnv* env = AndroidRuntime::getJNIEnv();
ScopedLocalRef<jobject> receiverObj(env, jniGetReferent(env, mReceiverWeakGlobal));
if (receiverObj.get()) {
// 回掉到 Java 层的 dispatchVsync 方法
env->CallVoidMethod(receiverObj.get(),
gDisplayEventReceiverClassInfo.dispatchVsync, timestamp, id, count);
}
}
@Override
public void onVsync(long timestampNanos, int builtInDisplayId, int frame) {
// 发消息执行 doFrame 方法,真正开始刷新绘制流程
mTimestampNanos = timestampNanos;
mFrame = frame;
Message msg = Message.obtain(mHandler, this);
msg.setAsynchronous(true);
mHandler.sendMessageAtTime(msg, timestampNanos / TimeUtils.NANOS_PER_MS);
}
DisplayEventReceiver 在初始化时会创建与 SurfaceFlinger 的 Connection 连接,当应用 App 主动发起 requestNextVsync 后,SurfaceFlinger 会在下一个 VSync 信号来的时候,主动通知我们的应用 App ,回掉到 Java 层的 onVsync 方法,开始真正的刷新绘制流程。
视频地址:https://pan.baidu.com/s/1tQ7omRNg8BgldnkjdlBPlw
视频密码:6hlc
网友评论