美文网首页
关于时间复杂度

关于时间复杂度

作者: Mr_Doer | 来源:发表于2018-12-05 23:26 被阅读51次

    一、定义

    一般情况下,算法中基本操作重复执行的次数是问题规模n的某个函数,用T(n)表示,若有某个辅助函数f(n),使得当n趋近于无穷大时,T(n)/f(n)的极限值为不等于零的常数,则称f(n)是T(n)的同数量级函数。记作T(n)=O(f(n)),称O(f(n))为算法的渐进时间复杂度(O是数量级的符号 ),简称时间复杂度。

    1) 时间频度

    • 一个算法执行所耗费的时间,从理论上是不能算出来的,必须上机运行测试才能知道。但我们不可能也没有必要对每个算法都上机测试,只需知道算法花费的时间多少
    • 一个算法花费的时间与算法中语句的执行次数成正比例,哪个算法中语句执行次数多,它花费时间就多。
    • 一个算法中的语句执行次数称为语句频度或时间频度。记为T(n)。

    2) 时间复杂度

    • n称为问题的规模,当n不断变化时,时间频度T(n)也会不断变化。但有时我们想知道它变化时呈现什么规律。为此,我们引入时间复杂度概念。
    • 一般情况下,算法中基本操作重复执行的次数是问题规模n的某个函数,用T(n)表示,若有某个辅助函数f(n),使得当n趋近于无穷大时,T(n)/f(n)的极限值为不等于零的常数,则称f(n)是T(n)的同数量级函数。记作T(n)=O(f(n))
    • 称O(f(n)) 为算法的渐进时间复杂度,简称时间复杂度。

    注意,时间频度与时间复杂度是不同的,时间频度不同但时间复杂度可能相同。
    如:T(n)=n2+3n+4与T(n)=4n2+2n+1它们的频度不同,但时间复杂度相同,都为O(n2)。

    常见的时间复杂度有:

    常数阶O(1)
    <对数阶O(log2n)
    <线性阶O(n)
    <线性对数阶O(nlog2n)
    <平方阶O(n^2)
    <方阶O(n3)
    <指数阶O(2^n)

    3) 最坏时间复杂度和平均时间复杂度

    • 最坏情况下的时间复杂度称最坏时间复杂度。一般不特别说明,讨论的时间复杂度均是最坏情况下的时间复杂度。 这样做的原因是:最坏情况下的时间复杂度是算法在任何输入实例上运行时间的上界,这就保证了算法的运行时间不会比任何更长。

    • 在最坏情况下的时间复杂度为T(n)=0(n),它表示对于任何输入实例,该算法的运行时间不可能大于0(n)。 平均时间复杂度是指所有可能的输入实例均以等概率出现的情况下,算法的期望运行时间。

    • 指数阶0(2n),显然,时间复杂度为指数阶0(2n)的算法效率极低,当n值稍大时就无法应用。

    -- 最坏时间复杂度

    通常,除非特别指定,我们提到的运行时间都是最坏情况的运行时间

    为什么是最坏时间复杂度:

    • 如果最差情况下的复杂度符合我们的要求,我们就可以保证所有的情况下都不会有问题。
    • 也许你觉得平均情况下的复杂度更吸引你(见下),但是:第一,难计算第二,有很多算法的平均情况和最差情况的复杂度是一样的. 第三,输入数据的分布函数很可能是你没法知道。
    -- 平均时间复杂度

    平均时间复杂度也是从概率的角度看,更能反映大多数情况下算法的表现。当然,实际中不可能将所有可能的输入都运行一遍,因此平均情况通常指的是一种数学期望值,而计算数学期望值则需要对输入的分布情况进行假设。平均运行时间很难通过分析得到,一般都是通过运行一定数量的实验数据后估算出来的。

    最后:

    1、时间复杂度取决于执行次数最多的语句,如当有若干个循环语句时,算法的时间复杂度是由嵌套层数最多的循环语句中最内层语句的频度f(n)决定的

    2、如果算法的执行时间不随着问题规模n的增加而增长,即使算法中有上千条语句,其执行时间也不过是一个较大的常数。此类算法的时间复杂度是O(1)

    3、算法的时间复杂度不仅仅依赖于问题的规模,还与输入实例的初始状态有关

    相关文章

      网友评论

          本文标题:关于时间复杂度

          本文链接:https://www.haomeiwen.com/subject/ovmgcqtx.html