美文网首页
【R>>DOSE】疾病本体语义相似性及富集分析

【R>>DOSE】疾病本体语义相似性及富集分析

作者: 高大石头 | 来源:发表于2021-07-06 18:51 被阅读0次

    Disease ontology (DO)疾病本体论是从疾病的角度对基因进行注释。DO对于从高通量测序结果到临床的对应关系的转换非常重要。DOSE包提供DO terms和基因的语义相似性分析,这些为生物学家探索疾病和基因功能的相似性提供了更大的可能。富集分析包括超几何分布和GSEA分析。

    • in-house developed R package :室内开发的R包?

    下面就来大致学习下DOSE包

    DOSE提供5种基因语义相似性评价方法,两种富集分析方法:超几何分布和GSEA,以及疾病和基因集之间的比较方法。

    1.语义相似性检测

    1.1 doSim()

    在DOSE中,用doSim来计算两个DO terms和两个 set of DO terms的语义相似性

    rm(list = ls())
    library(DOSE)
    library(clusterProfiler)
    a <- c("DOID:14095", "DOID:5844", "DOID:2044", "DOID:8432", "DOID:9146",
           "DOID:10588", "DOID:3209", "DOID:848", "DOID:3341", "DOID:252")
    b <- c("DOID:9409", "DOID:2491", "DOID:4467", "DOID:3498", "DOID:11256")
    doSim(a[1],b[1],measure = "Wang")
    
    ## [1] 0.07142995
    

    doSim() measure共有5种方法,“Wang”, “Resnik”, “Rel”, “Jiang”, and “Lin”.

    s <- doSim(a,b,measure = "Wang")
    s
    
    ##             DOID:9409  DOID:2491  DOID:4467  DOID:3498 DOID:11256
    ## DOID:14095 0.07142995 0.05714393 0.03676194 0.03676194 0.52749870
    ## DOID:5844  0.14897652 0.11564838 0.02801328 0.02801328 0.06134327
    ## DOID:2044  0.14897652 0.11564838 0.02801328 0.02801328 0.06134327
    ## DOID:8432  0.17347273 0.13877811 0.03676194 0.03676194 0.07142995
    ## DOID:9146  0.07142995 0.05714393 0.03676194 0.03676194 0.17347273
    ## DOID:10588 0.13240905 0.18401515 0.02208240 0.02208240 0.05452137
    ## DOID:3209  0.14897652 0.11564838 0.02801328 0.02801328 0.06134327
    ## DOID:848   0.14897652 0.11564838 0.02801328 0.02801328 0.06134327
    ## DOID:3341  0.13240905 0.09998997 0.02208240 0.02208240 0.05452137
    ## DOID:252   0.06134327 0.04761992 0.02801328 0.02801328 0.06134327
    
    # 语义相似性结果可视化
    simplot(s,
            color.low = "white",color.high = "red",
            labs = TRUE,digits = 2,labs.size = 5,
            font.size = 14,xlab = "",ylab = "")
    

    1.2 geneSim()

    DOSE还可以计算基因之间的相似性,有max, avg, rcmaxBMA多种合并方法。

    g1 <- c("84842", "2524", "10590", "3070", "91746")
    g2 <- c("84289", "6045", "56999", "9869")
    gs <- geneSim(g1,g2,measure = "Wang",combine = "BMA")
    
    simplot(gs,
            color.low = "white",color.high = "red",
            labs = TRUE,digits = 2,labs.size = 5,
            font.size = 14,xlab = "",ylab = "")
    

    1.3 clusterSim()

    clusterSim()比较两个基因集间的语义相似性,mclusterSim()比较多个基因集间的语义相似性。

    clusterSim(g1,g2,measure = "Wang",combine = "BMA")
    
    ## [1] 0.549
    
    g3 <- c("57491", "6296", "51438", "5504", "27319", "1643")
    clusters <- list(a=g1,b=g2,c=g3)
    mclusterSim(clusters,measure = "Wang",combine = "BMA")
    
    ##       a     b     c
    ## a 1.000 0.549 0.425
    ## b 0.549 1.000 0.645
    ## c 0.425 0.645 1.000
    

    2.疾病-基因相关性网络

    data(geneList,package = "DOSE")
    gene <- names(geneList)[abs(geneList)>1]
    x <- enrichDO(gene,ont="DO",
                  pvalueCutoff = 0.05,
                  pAdjustMethod = "BH",
                  universe = names(geneList),
                  minGSSize = 5,
                  readable = T)
    cnetplot(x,categorySize="pvalue",foldChange = geneList)
    
    barplot(x,showCategory = 10)
    

    以上是超几何分布检验分析的结果,下面进行GSEA富集分析

    y <- gseDO(geneList,
               minGSSize= 120,
               pvalueCutoff=0.2,
               pAdjustMethod = "BH",
               verbose = F)
    library(enrichplot)
    gseaplot2(y,1:4,pvalue_table = T)
    

    3.彩蛋

    Y叔在DOSE里自定义了theme_dose()主题,还是比较符合论文发表需求的,与ggsci的配色交叉使用会有不一样的感觉吆。

    library(ggsci)
    ggplot(x,aes(Count/810,fct_reorder(Description,Count)))+
      geom_segment(aes(xend=0,yend=Description))+
      geom_point(aes(size=Count,color=-log10(p.adjust)))+
      scale_color_gsea()+
      theme_dose(12)+
      labs(x="",y="")
    

    参考链接:

    1.DOSE: Disease Ontology Semantic and Enrichment analysis

    2.Biomedical Knowledge Mining using GOSemSim and clusterProfiler

    相关文章

      网友评论

          本文标题:【R>>DOSE】疾病本体语义相似性及富集分析

          本文链接:https://www.haomeiwen.com/subject/pbogultx.html