美文网首页
ElasticSearch 基于Netty的通信原理

ElasticSearch 基于Netty的通信原理

作者: persisting_ | 来源:发表于2018-12-09 13:32 被阅读0次

ElasticSearch由Transport负责通信,基于TCP通信采用Netty实现,采用Plugin构建,具体可参考Netty4Plugin类。

1 Netty BootstrapServerBootstrap的创建

TCP通信实现类为TcpTransport,采用Netty的具体实现类则为Netty4Transport。我们知道基于Netty的通信编码中需要为客户端创建Bootstrap,为服务端创建ServerBootstrap,TcpTransport实现了AbstractLifecycleComponentBootstrapServerBootstrap的创建是在AbstractLifecycleComponent.doStart中创建的。

因为ElasticSearch每个节点都既是服务端(处理请求),也是客户端(发起请求),所有每个节点都会既创建服务端,也创建客户端。

//Netty4Transport
@Override
protected void doStart() {
    boolean success = false;
    try {
        //创建客户端Bootstrap
        clientBootstrap = createClientBootstrap();
        if (NetworkService.NETWORK_SERVER.get(settings)) {
            for (ProfileSettings profileSettings : profileSettings) {
                //根据配置创建服务端ServerBootstrap
                createServerBootstrap(profileSettings);
                //创建完一个服务端ServerBootstrap进行端口绑定
                bindServer(profileSettings);
            }
        }
        super.doStart();
        success = true;
    } finally {
        if (success == false) {
            doStop();
        }
    }
}

1.1 客户端Bootstrap创建

1.1.1 Bootstrap模板的创建

本小杰标题说是Bootstrap模板的创建,这是因为createClientBootstrap创建的Bootstrap并没有真正作为客户端进行通信,后续在具体发起请求时,会调用这里创建的Bootstrap的clone函数克隆新的Bootstrap使用,克隆之后注册handler等。具体后面会分析。

//Netty4Transport
private Bootstrap createClientBootstrap() {
    final Bootstrap bootstrap = new Bootstrap();
    //客户端的创建没有涉及具体的handler注册,因为这里返回的客户端Bootstrap
    //仅仅起到一个模板的作用,后续具体需要发起通信(发送请求)时,会
    //根据此Bootstrap克隆出一个具体的Bootstrap,然后注册handler。
    //下面主要根据配置设置bootstrap的一些属性。
    bootstrap.group(new NioEventLoopGroup(workerCount, daemonThreadFactory(settings, TRANSPORT_CLIENT_BOSS_THREAD_NAME_PREFIX)));
    //设置Netty客户端NioSocketChannel
    bootstrap.channel(NioSocketChannel.class);

    bootstrap.option(ChannelOption.TCP_NODELAY, TCP_NO_DELAY.get(settings));
    bootstrap.option(ChannelOption.SO_KEEPALIVE, TCP_KEEP_ALIVE.get(settings));

    final ByteSizeValue tcpSendBufferSize = TCP_SEND_BUFFER_SIZE.get(settings);
    if (tcpSendBufferSize.getBytes() > 0) {
        bootstrap.option(ChannelOption.SO_SNDBUF, Math.toIntExact(tcpSendBufferSize.getBytes()));
    }

    final ByteSizeValue tcpReceiveBufferSize = TCP_RECEIVE_BUFFER_SIZE.get(settings);
    if (tcpReceiveBufferSize.getBytes() > 0) {
        bootstrap.option(ChannelOption.SO_RCVBUF, Math.toIntExact(tcpReceiveBufferSize.getBytes()));
    }

    bootstrap.option(ChannelOption.RCVBUF_ALLOCATOR, recvByteBufAllocator);

    final boolean reuseAddress = TCP_REUSE_ADDRESS.get(settings);
    bootstrap.option(ChannelOption.SO_REUSEADDR, reuseAddress);

    return bootstrap;
}

1.1.2 获取客户端连接

上面只是创建了Bootstrap模板,下面是具体打开Connection时的逻辑:克隆模板得到Bootstrap,注册handler等。

具体看实现代码:

//TcpTransport
 @Override
public NodeChannels openConnection(DiscoveryNode node, ConnectionProfile connectionProfile) {
    ...
    try {
        ensureOpen();
        try {
            ...
            for (int i = 0; i < numConnections; ++i) {
                try {
                   ...
                   //初始化Channel
                    TcpChannel channel = initiateChannel(node, ...
                } catch (Exception e) {
                    ...
                }
            }

           ...
}

TcpTransport.initiateChannel在子类Netty4Transport实现:

//Netty4Transport
@Override
protected Netty4TcpChannel initiateChannel(DiscoveryNode node, ActionListener<Void> listener) throws IOException {
    InetSocketAddress address = node.getAddress().address();
    //根据模板Bootstrap克隆具体使用的对象实例
    Bootstrap bootstrapWithHandler = clientBootstrap.clone();
    //注册handler,这里注册的是一个ChannelInitializer对象
    //当客户端连接服务端成功后向其pipeline设置handler
    //注册的handler则涉及到编码、解码、粘包/拆包解决、报文处理等解决,我们后面和
    //服务端handler一起介绍
    bootstrapWithHandler.handler(getClientChannelInitializer(node));
    bootstrapWithHandler.remoteAddress(address);
    ChannelFuture channelFuture = bootstrapWithHandler.connect();

    Channel channel = channelFuture.channel();
    if (channel == null) {
        ExceptionsHelper.maybeDieOnAnotherThread(channelFuture.cause());
        throw new IOException(channelFuture.cause());
    }
    addClosedExceptionLogger(channel);

    Netty4TcpChannel nettyChannel = new Netty4TcpChannel(channel, "default");
    channel.attr(CHANNEL_KEY).set(nettyChannel);

    channelFuture.addListener(...);

    return nettyChannel;
}

1.2 服务端ServerBootstrap创建

////Netty4Transport
private void createServerBootstrap(ProfileSettings profileSettings) {
    String name = profileSettings.profileName;
    ...
    final ThreadFactory workerFactory = daemonThreadFactory(this.settings, TRANSPORT_SERVER_WORKER_THREAD_NAME_PREFIX, name);

    final ServerBootstrap serverBootstrap = new ServerBootstrap();

    serverBootstrap.group(new NioEventLoopGroup(workerCount, workerFactory));
    //设置Netty服务端NioServerSocketChannel
    serverBootstrap.channel(NioServerSocketChannel.class);
    //这里是重点,熟悉Netty的应该知道,childHandler一般会设置为ChannelInitializer
    //当客户端连接成功后向其pipeline设置handler
    //注册的handler则涉及到具体的编码、解码、粘包/拆包解决、报文处理等
    serverBootstrap.childHandler(getServerChannelInitializer(name));
    //注册服务端异常处理handler
    serverBootstrap.handler(new ServerChannelExceptionHandler());

    serverBootstrap.childOption(ChannelOption.TCP_NODELAY, profileSettings.tcpNoDelay);
    serverBootstrap.childOption(ChannelOption.SO_KEEPALIVE, profileSettings.tcpKeepAlive);

    if (profileSettings.sendBufferSize.getBytes() != -1) {
        serverBootstrap.childOption(ChannelOption.SO_SNDBUF, Math.toIntExact(profileSettings.sendBufferSize.getBytes()));
    }

    if (profileSettings.receiveBufferSize.getBytes() != -1) {
        serverBootstrap.childOption(ChannelOption.SO_RCVBUF, Math.toIntExact(profileSettings.receiveBufferSize.bytesAsInt()));
    }

    serverBootstrap.option(ChannelOption.RCVBUF_ALLOCATOR, recvByteBufAllocator);
    serverBootstrap.childOption(ChannelOption.RCVBUF_ALLOCATOR, recvByteBufAllocator);

    serverBootstrap.option(ChannelOption.SO_REUSEADDR, profileSettings.reuseAddress);
    serverBootstrap.childOption(ChannelOption.SO_REUSEADDR, profileSettings.reuseAddress);
    serverBootstrap.validate();

    serverBootstraps.put(name, serverBootstrap);
}

2 客户端、服务端Handler介绍

这里的标题为客户端、服务端Handler介绍,下文具体内容涉及到编码、解码、粘包/拆包解决、报文处理等。

首先看一下上面服务端、客户端ChannelInitializer实现:

//Netty4Transport
protected ChannelHandler getClientChannelInitializer(DiscoveryNode node) {
    return new ClientChannelInitializer();
}

//Netty4Transport.ClientChannelInitializer
protected void initChannel(Channel ch) throws Exception {
    //注册负责记录log的handler,但是进入ESLoggingHandler具体实现
    //可以看到其没有做日志记录操作,源码注释说明因为TcpTransport会做日志记录
    ch.pipeline().addLast("logging", new ESLoggingHandler());
    //注册解码器,这里没有注册编码器因为编码是在TcpTransport实现的,
    //需要发送的报文到达Channel已经是编码之后的格式了
    ch.pipeline().addLast("size", new Netty4SizeHeaderFrameDecoder());
    // using a dot as a prefix means this cannot come from any settings parsed
    //负责对报文进行处理,主要识别是request还是response
    //然后进行相应的处理
    ch.pipeline().addLast("dispatcher", new Netty4MessageChannelHandler(Netty4Transport.this));
}

//Netty4Transport
protected ChannelHandler getServerChannelInitializer(String name) {
    return new ServerChannelInitializer(name);
}

//Netty4Transport.ServerChannelInitializer
//这里注册的handler和上面客户端是一样的
@Override
protected void initChannel(Channel ch) throws Exception {
    addClosedExceptionLogger(ch);
    Netty4TcpChannel nettyTcpChannel = new Netty4TcpChannel(ch, name);
    ch.attr(CHANNEL_KEY).set(nettyTcpChannel);
    ch.pipeline().addLast("logging", new ESLoggingHandler());
    ch.pipeline().addLast("size", new Netty4SizeHeaderFrameDecoder());
    ch.pipeline().addLast("dispatcher", new Netty4MessageChannelHandler(Netty4Transport.this));
    serverAcceptedChannel(nettyTcpChannel);
}

2.1 报文处理-Netty4MessageChannelHandler

Netty4MessageChannelHandler负责对报文进行处理,具体看源码:

//Netty4MessageChannelHandler
@Override
public void channelRead(ChannelHandlerContext ctx, Object msg) throws Exception {
    Transports.assertTransportThread();
    assert msg instanceof ByteBuf : "Expected message type ByteBuf, found: " + msg.getClass();

    final ByteBuf buffer = (ByteBuf) msg;
    try {
        Channel channel = ctx.channel();
        Attribute<Netty4TcpChannel> channelAttribute = channel.attr(Netty4Transport.CHANNEL_KEY);
        //调用TcpTransport.inboundMessage进行消息处理
        transport.inboundMessage(channelAttribute.get(), Netty4Utils.toBytesReference(buffer));
    } finally {
        buffer.release();
    }
}

TcpTransport会判断该报文是request还是response,然后进行处理:

//TcpTransport
public void inboundMessage(TcpChannel channel, BytesReference message) {
    try {
        transportLogger.logInboundMessage(channel, message);
        // Message length of 0 is a ping
        if (message.length() != 0) {
            //判断逻辑所在,不再展开赘述,源码写的非常清楚,可自行参考源码
            messageReceived(message, channel);
        }
    } catch (Exception e) {
        onException(channel, e);
    }
}

2.2 编码

ElasticSearch并没有像传统的Netty编程那样,注册Encoder和Decoder,从上面的介绍可以看出,ElasticSearch只注册了Decoder,那么ElasticSearch是如何编码的呢?上面也提到了,ElasticSearch的编码是在TcpTransport实现的,TcpTransport会对报文进行编码,然后直接发送。

TcpTransport发送请求和响应的函数为sendRequestToChannelsendResponse,二者最后都会调用buildMessage进行Encode:

//TcpTransport
 /**
    * Serializes the given message into a bytes representation
    */
private BytesReference buildMessage(long requestId, byte status, Version nodeVersion, TransportMessage message,
                                    CompressibleBytesOutputStream stream) throws IOException {
    final BytesReference zeroCopyBuffer;
    //首先向stream里写消息体字节
    if (message instanceof BytesTransportRequest) { // what a shitty optimization - we should use a direct send method instead
        BytesTransportRequest bRequest = (BytesTransportRequest) message;
        assert nodeVersion.equals(bRequest.version());
        bRequest.writeThin(stream);
        zeroCopyBuffer = bRequest.bytes;
    } else {
        message.writeTo(stream);
        zeroCopyBuffer = BytesArray.EMPTY;
    }
    // we have to call materializeBytes() here before accessing the bytes. A CompressibleBytesOutputStream
    // might be implementing compression. And materializeBytes() ensures that some marker bytes (EOS marker)
    // are written. Otherwise we barf on the decompressing end when we read past EOF on purpose in the
    // #validateRequest method. this might be a problem in deflate after all but it's important to write
    // the marker bytes.
    //获取写入的body
    final BytesReference messageBody = stream.materializeBytes();
    //创建header,header里封装了请求ID、status、version、body长度等
    //status里就指明了该请求是request还是response等,具体可参考TransportStatus
    final BytesReference header = buildHeader(requestId, status, stream.getVersion(), messageBody.length() + zeroCopyBuffer.length());
    //组合body、header成一个完整的报文
    return new CompositeBytesReference(header, messageBody, zeroCopyBuffer);
}

private BytesReference buildHeader(long requestId, byte status, Version protocolVersion, int length) throws IOException {
    try (BytesStreamOutput headerOutput = new BytesStreamOutput(TcpHeader.HEADER_SIZE)) {
        headerOutput.setVersion(protocolVersion);
        TcpHeader.writeHeader(headerOutput, requestId, status, protocolVersion, length);
        final BytesReference bytes = headerOutput.bytes();
        assert bytes.length() == TcpHeader.HEADER_SIZE : "header size mismatch expected: " + TcpHeader.HEADER_SIZE + " but was: "
            + bytes.length();
        return bytes;
    }
}

以上就是Encoder的逻辑。

2.3 解码以及粘包/拆包解决

解码以及粘包/拆包解决的实现其实是一起的,我们知道经典的粘包/拆包解决方案是固定报文长度、指定分隔符、报文头记录报文长度等。

ElasticSearch使用的方案是报文头记录报文长度,从上面的Encoder可知,在header中记录了body的长度,所以报文接收方可据此处理粘包/拆包问题,并解析出报文,具体实现在Netty4SizeHeaderFrameDecoder中。

Netty4SizeHeaderFrameDecoder继承自ByteToMessageDecoder,所以具体的decode在其decode函数中:

//Netty4SizeHeaderFrameDecoder
 @Override
protected void decode(ChannelHandlerContext ctx, ByteBuf in, List<Object> out) throws Exception {
    try {
        boolean continueDecode = true;
        while (continueDecode) {
            //查看能不能读取至少6个字节的长度,6个字节因为header的长度为6个字节,
            //这里主要是查看能不能读取一个完整的header,因为读取
            //header之后才能知道body的字节数,进而才能读取body
            //如果可以读取一个完整的header,则返回header中记录的body字节数
            int messageLength = TcpTransport.readMessageLength(Netty4Utils.toBytesReference(in));
            //没有6个字节,则等待后续数据流
            //具体如何等待后续数据流,可以看看ByteToMessageDecoder的实现,其实就是有一个cumulation负责积累收到的字节,
            //每次收到新字节放入cumulation中,再调用具体的decode函数尝试进行解码
            if (messageLength == -1) {
                continueDecode = false;
            } else {
                //此报文总字节数=heander字节数+body字节数
                int messageLengthWithHeader = messageLength + HEADER_SIZE;
                // If the message length is greater than the network bytes available, we have not read a complete frame.
                //报文总字节数大于当前收到的字节数,表示报文还没有全部传输过来
                //继续等待后续数据流
                if (messageLengthWithHeader > in.readableBytes()) {
                    continueDecode = false;
                } else {
                    //报文总字节数小于收到的字节数,则进行报文读取操作
                    final ByteBuf message = in.retainedSlice(in.readerIndex() + HEADER_SIZE, messageLength);
                    out.add(message);
                    in.readerIndex(in.readerIndex() + messageLengthWithHeader);
                }
            }
        }
    } catch (IllegalArgumentException ex) {
        throw new TooLongFrameException(ex);
    }
}

3 安全通信SecurityNetty4Transport

首先看源码中对SecurityNetty4Transport的注释:

Implementation of a transport that extends the {@link Netty4Transport} to add SSL and IP Filtering

可见SecurityNetty4Transport就是在Netty4Transport的基础上增加了SSL安全功能。是Netty4Transport的一个子类。

在上面我们介绍了Netty4Transport中客户端和服务端是如何注册ChannelInitializer的。Netty4Transport在建立客户端、服务端Bootstrap时会分别调用getClientChannelInitializergetServerChannelInitializer获取ChannelInitializer实例。

SecurityNetty4Transport实现SSL安全验证的关键就在对父类Netty4Transport方法getClientChannelInitializergetServerChannelInitializer的重写。

首先看父类Netty4Transport方法getClientChannelInitializergetServerChannelInitializer的定义:

//Netty4Transport
protected ChannelHandler getServerChannelInitializer(String name) {
    return new ServerChannelInitializer(name);
}

protected ChannelHandler getClientChannelInitializer(DiscoveryNode node) {
    return new ClientChannelInitializer();
}

再看子类SecurityNetty4Transport方法getClientChannelInitializergetServerChannelInitializer的定义:

//SecurityNetty4Transport
 @Override
public final ChannelHandler getServerChannelInitializer(String name) {
    //如果设置启用SSL,则返回SSL功能的ChannelInitializer
    //否则返回没有SSL的ChannelInitializer(通过调用父类Netty4Transport.getServerChannelInitializer实现)
    if (sslEnabled) {
        SSLConfiguration configuration = profileConfiguration.get(name);
        if (configuration == null) {
            throw new IllegalStateException("unknown profile: " + name);
        }
        return getSslChannelInitializer(name, configuration);
    } else {
        return getNoSslChannelInitializer(name);
    }
}

//返回Security的ChannelInitializer,其实这里有个小的问题,上面服务端ChannelInitializer获取时判断了是否启用了SSL,为什么客户端这里没有判断?
//其实客户端也判断了,不过是在SecurityClientChannelInitializer的实现中判断的,后文会说到
@Override
protected ChannelHandler getClientChannelInitializer(DiscoveryNode node) {
    return new SecurityClientChannelInitializer(node);
}

//返回具有SSL功能处理的ChannelInitializer
 protected ServerChannelInitializer getSslChannelInitializer(final String name, final SSLConfiguration configuration) {
        return new SslChannelInitializer(name, sslConfiguration);
}

//直接返回父类Server ChannelInitializer实现,没有SSL功能
protected ChannelHandler getNoSslChannelInitializer(final String name) {
    return super.getServerChannelInitializer(name);
}

通过上面可以看出,SSL功能实现关键在于SslChannelInitializerSecurityClientChannelInitializer,这两个类分别是SecurityNetty4Transport父类返回的ServerChannelInitializerClientChannelInitializer的子类:

//SecurityNetty4Transport
public class SslChannelInitializer extends ServerChannelInitializer {
    private final SSLConfiguration configuration;

    public SslChannelInitializer(String name, SSLConfiguration configuration) {
        super(name);
        this.configuration = configuration;
    }

    @Override
    protected void initChannel(Channel ch) throws Exception {
        //先调用父类方法,注册解码器等handler
        super.initChannel(ch);
        SSLEngine serverEngine = sslService.createSSLEngine(configuration, null, -1);
        serverEngine.setUseClientMode(false);
        final SslHandler sslHandler = new SslHandler(serverEngine);
        //额外注册一个sslHandler
        ch.pipeline().addFirst("sslhandler", sslHandler);
    }
}

private class SecurityClientChannelInitializer extends ClientChannelInitializer {

    private final boolean hostnameVerificationEnabled;
    private final SNIHostName serverName;

    SecurityClientChannelInitializer(DiscoveryNode node) {
        this.hostnameVerificationEnabled = sslEnabled && sslConfiguration.verificationMode().isHostnameVerificationEnabled();
        String configuredServerName = node.getAttributes().get("server_name");
        if (configuredServerName != null) {
            try {
                serverName = new SNIHostName(configuredServerName);
            } catch (IllegalArgumentException e) {
                throw new ConnectTransportException(node, "invalid DiscoveryNode server_name [" + configuredServerName + "]", e);
            }
        } else {
            serverName = null;
        }
    }

    @Override
    protected void initChannel(Channel ch) throws Exception {
        //先调用父类方法,注册解码器等handler
        super.initChannel(ch);
        //客户端ChannelInitializer在这里判断是否启用了SSL
        if (sslEnabled) {
            //如果启用了SSL则额外注册一个sslHandler
            ch.pipeline().addFirst(new ClientSslHandlerInitializer(sslConfiguration, sslService, hostnameVerificationEnabled,
                serverName));
        }
    }
}

相关文章

网友评论

      本文标题:ElasticSearch 基于Netty的通信原理

      本文链接:https://www.haomeiwen.com/subject/pcnhhqtx.html