美文网首页
2018-06-12 Neural Network

2018-06-12 Neural Network

作者: Hiroyuki | 来源:发表于2018-06-12 11:54 被阅读0次

    class NeuralNetwork:
    def init(self, layers, activation='tanh'):

        if activation == 'logistic':
            self.activation = logistic
            self.activation_deriv = logistic_derivative
        elif activation == 'tanh':
            self.activation = tanh
            self.activation_deriv = tanh_deriv
            
        self.weights = []
        for i in range(1, len(layers) - 1):
            self.weights.append((2*np.random.random((layers[i - 1] + 1, layers[i] + 1))-1)*0.25)
            self.weights.append((2*np.random.random((layers[i] + 1, layers[i + 1]))-1)*0.25)
    
    def fit(self, X, y, learning_rate=0.2, epochs=10000):
        X = np.atleast_2d(X) #x trainning dataset y target
        temp = np.ones([X.shape[0], X.shape[1]+1])
        temp[:, 0:-1] = X  # adding the bias unit to the input layer
        X = temp
        y = np.array(y)
    
        for k in range(epochs):   #loop times
            i = np.random.randint(X.shape[0])
            a = [X[i]]   #trainning data
    
            for l in range(len(self.weights)):  #going forward network, for each layer
                a.append(self.activation(np.dot(a[l], self.weights[l])))  #Computer the node value for each layer (O_i) using activation function 
            error = y[i] - a[-1]  #Computer the error at the top layer
            deltas = [error * self.activation_deriv(a[-1])] #For output layer, Err calculation (delta is updated error)
    
            #Staring backprobagation
            for l in range(len(a) - 2, 0, -1): # we need to begin at the second to last layer
                #Compute the updated error (i,e, deltas) for each node going from top layer to input layer
    
                deltas.append(deltas[-1].dot(self.weights[l].T)*self.activation_deriv(a[l]))
            deltas.reverse()
            for i in range(len(self.weights)):
                layer = np.atleast_2d(a[i])
                delta = np.atleast_2d(deltas[i])
                self.weights[i] += learning_rate * layer.T.dot(delta)
    
    def predict(self, x):
        x = np.array(x)
        temp = np.ones(x.shape[0]+1)
        temp[0:-1] = x
        a = temp
        for l in range(0, len(self.weights)):
            a = self.activation(np.dot(a, self.weights[l]))
        return a
    

    相关文章

      网友评论

          本文标题:2018-06-12 Neural Network

          本文链接:https://www.haomeiwen.com/subject/pdyleftx.html