import numpy as np
from math import sqrt
from collections import Counter
def distance(k, X_train, Y_train, x):
assert 1 <= k <= X_train.shape[0], "K must be valid"
assert X_train.shape[0] == Y_train.shape[0], "the size of X_train must equal to the size of y_train"
assert X_train.shape[1] == x.shape[0], "the feature number of x must be equal to X_train"
distance = [sqrt(np.sum((x_train - x)**2)) for x_train in X_train]
nearest = np.argsort(distance)
topk_y = [Y_train[i] for i in nearest[:k]]
votes = Counter(topk_y)
return votes.most_common(1)[0][0]
if __name__ == "__main__":
X_train = np.array([[1.0, 3.5],
[2.0, 7],
[3.0, 10.5],
[4.0, 14],
[5, 25],
[6, 30],
[7, 35],
[8, 40]])
Y_train = np.array([0, 0, 0, 0, 1, 1, 1, 1])
x = np.array([8, 21])
label = distance(3, X_train, Y_train, x)
print(label)
面向对象的knn实现
class KNNClassifier:
def __init__(self, k):
"""初始化KNN分类器"""
assert k >= 1, "k must be valid"
self.k = k
self._X_train = None
self._Y_train = None
def fit(self, X_train, Y_train):
self._X_train = X_train
self._Y_train = Y_train
return self
def _predict(self,x):
distances = [sqrt(np.sum((x_train - x) ** 2)) for x_train in self._X_train]
nearset = np.argsort(distances)
topK_y = [self._Y_train[i][0] for i in nearset[:self.k]]
votes = Counter(topK_y)
return votes.most_common(1)[0][0]
def predict(self, x_predict):
y_precict = [self._predict(x) for x in x_predict]
return np.array(y_precict,dtype=np.int8)
def __repr__(self):
return "KNN(k=%d)" %self.k
s = KNNClassifier(k=7)
s.fit(X_train=X_train,Y_train=Y_train)
y = s.predict(x_predict=x,)
print(y[0])
网友评论