创建型模式
创建型模式有以下几种:
Creational Patterns:
Pattern Description
singleton 仅仅实例化一次
abstract_factory use a generic function with specific factories
borg a singleton with shared-state among instances
builder instead of using multiple constructors, builder object receives parameters and returns constructed objects
factory_method delegate a specialized function/method to create instances
lazy_evaluation lazily-evaluated property pattern in Python
pool preinstantiate and maintain a group of instances of the same type
prototype use a factory and clones of a prototype for new instances (if instantiation is expensive)
已经花费了大量篇幅已经介绍了抽象工厂,建造者,工厂,原型这几个模式,没有介绍的是有单例,共享(borg),惰性求值和pool这几个模式,下面简单介绍下:
对于singleton,如果你真的想使用其他编程语言中类似的“单例模式”,你需要看:
http://blog.csdn.net/ghostfromheaven/article/details/7671853
http://ghostfromheaven.iteye.com/blog/1562618
但是,我要问的是,Python真的需要单例模式吗?我指像其他编程语言中的单例模式。
答案是:不需要!
因为,Python有模块(module),最pythonic的单例典范。
模块在在一个应用程序中只有一份,它本身就是单例的,将你所需要的属性和方法,直接暴露在模块中变成模块的全局变量和方法即可!
http://stackoverflow.com/a/31887/1447185
下面是四种方法实现了singleton,可以参考以下。
#-*- encoding=utf-8 -*-
print '----------------------方法1--------------------------'
#方法1,实现__new__方法
#并在将一个类的实例绑定到类变量_instance上,
#如果cls._instance为None说明该类还没有实例化过,实例化该类,并返回
#如果cls._instance不为None,直接返回cls._instance
class Singleton(object):
def __new__(cls, *args, **kw):
if not hasattr(cls, '_instance'):
orig = super(Singleton, cls)
cls._instance = orig.__new__(cls, *args, **kw)
return cls._instance
class MyClass(Singleton):
a = 1
one = MyClass()
two = MyClass()
two.a = 3
print one.a
#3
#one和two完全相同,可以用id(), ==, is检测
print id(one)
#29097904
print id(two)
#29097904
print one == two
#True
print one is two
#True
print '----------------------方法2--------------------------'
#方法2,共享属性;所谓单例就是所有引用(实例、对象)拥有相同的状态(属性)和行为(方法)
#同一个类的所有实例天然拥有相同的行为(方法),
#只需要保证同一个类的所有实例具有相同的状态(属性)即可
#所有实例共享属性的最简单最直接的方法就是__dict__属性指向(引用)同一个字典(dict)
#可参看:http://code.activestate.com/recipes/66531/
class Borg(object):
_state = {}
def __new__(cls, *args, **kw):
ob = super(Borg, cls).__new__(cls, *args, **kw)
ob.__dict__ = cls._state
return ob
class MyClass2(Borg):
a = 1
one = MyClass2()
two = MyClass2()
#one和two是两个不同的对象,id, ==, is对比结果可看出
two.a = 3
print one.a
#3
print id(one)
#28873680
print id(two)
#28873712
print one == two
#False
print one is two
#False
#但是one和two具有相同的(同一个__dict__属性),见:
print id(one.__dict__)
#30104000
print id(two.__dict__)
#30104000
print '----------------------方法3--------------------------'
#方法3:本质上是方法1的升级(或者说高级)版
#使用__metaclass__(元类)的高级python用法
class Singleton2(type):
def __init__(cls, name, bases, dict):
super(Singleton2, cls).__init__(name, bases, dict)
cls._instance = None
def __call__(cls, *args, **kw):
if cls._instance is None:
cls._instance = super(Singleton2, cls).__call__(*args, **kw)
return cls._instance
class MyClass3(object):
__metaclass__ = Singleton2
one = MyClass3()
two = MyClass3()
two.a = 3
print one.a
#3
print id(one)
#31495472
print id(two)
#31495472
print one == two
#True
print one is two
#True
print '----------------------方法4--------------------------'
#方法4:也是方法1的升级(高级)版本,
#使用装饰器(decorator),
#这是一种更pythonic,更elegant的方法,
#单例类本身根本不知道自己是单例的,因为他本身(自己的代码)并不是单例的
def singleton(cls, *args, **kw):
instances = {}
def _singleton():
if cls not in instances:
instances[cls] = cls(*args, **kw)
return instances[cls]
return _singleton
@singleton
class MyClass4(object):
a = 1
def __init__(self, x=0):
self.x = x
one = MyClass4()
two = MyClass4()
two.a = 3
print one.a
#3
print id(one)
#29660784
print id(two)
#29660784
print one == two
#True
print one is two
#True
one.x = 1
print one.x
#1
print two.x
#1
对于共享(borg)模式,主要来自于star trek中的borg种族的特性。可以参考以下代码:
#!/usr/bin/env python
# -*- coding: utf-8 -*-
class Borg(object):
__shared_state = {}
def __init__(self):
self.__dict__ = self.__shared_state
self.state = 'Init'
def __str__(self):
return self.state
class YourBorg(Borg):
pass
if __name__ == '__main__':
rm1 = Borg()
rm2 = Borg()
rm1.state = 'Idle'
rm2.state = 'Running'
print('rm1: {0}'.format(rm1))
print('rm2: {0}'.format(rm2))
rm2.state = 'Zombie'
print('rm1: {0}'.format(rm1))
print('rm2: {0}'.format(rm2))
print('rm1 id: {0}'.format(id(rm1)))
print('rm2 id: {0}'.format(id(rm2)))
rm3 = YourBorg()
print('rm1: {0}'.format(rm1))
print('rm2: {0}'.format(rm2))
print('rm3: {0}'.format(rm3))
### OUTPUT ###
# rm1: Running
# rm2: Running
# rm1: Zombie
# rm2: Zombie
# rm1 id: 140732837899224
# rm2 id: 140732837899296
# rm1: Init
# rm2: Init
# rm3: Init
主要还是要关注这条语句:
self.__dict__ = self.__shared_state
通过这条语句实现了共享。
下面看以下惰性求值,lazy_evaluation模式:
#!/usr/bin/env python
# -*- coding: utf-8 -*-
"""
Lazily-evaluated property pattern in Python.
https://en.wikipedia.org/wiki/Lazy_evaluation
References:
bottle
https://github.com/bottlepy/bottle/blob/cafc15419cbb4a6cb748e6ecdccf92893bb25ce5/bottle.py#L270
django
https://github.com/django/django/blob/ffd18732f3ee9e6f0374aff9ccf350d85187fac2/django/utils/functional.py#L19
pip
https://github.com/pypa/pip/blob/cb75cca785629e15efb46c35903827b3eae13481/pip/utils/__init__.py#L821
pyramimd
https://github.com/Pylons/pyramid/blob/7909e9503cdfc6f6e84d2c7ace1d3c03ca1d8b73/pyramid/decorator.py#L4
werkzeug
https://github.com/pallets/werkzeug/blob/5a2bf35441006d832ab1ed5a31963cbc366c99ac/werkzeug/utils.py#L35
"""
from __future__ import print_function
import functools
class lazy_property(object):
def __init__(self, function):
self.function = function
functools.update_wrapper(self, function)
def __get__(self, obj, type_):
if obj is None:
return self
val = self.function(obj)
obj.__dict__[self.function.__name__] = val
return val
class Person(object):
def __init__(self, name, occupation):
self.name = name
self.occupation = occupation
@lazy_property
def relatives(self):
# Get all relatives, let's assume that it costs much time.
relatives = "Many relatives."
return relatives
def main():
Jhon = Person('Jhon', 'Coder')
print(u"Name: {0} Occupation: {1}".format(Jhon.name, Jhon.occupation))
print(u"Before we access `relatives`:")
print(Jhon.__dict__)
print(u"Jhon's relatives: {0}".format(Jhon.relatives))
print(u"After we've accessed `relatives`:")
print(Jhon.__dict__)
if __name__ == '__main__':
main()
### OUTPUT ###
# Name: Jhon Occupation: Coder
# Before we access `relatives`:
# {'name': 'Jhon', 'occupation': 'Coder'}
# Jhon's relatives: Many relatives.
# After we've accessed `relatives`:
# {'relatives': 'Many relatives.', 'name': 'Jhon', 'occupation': 'Coder'}
pool模式非常的好理解,就是用Queue实现了一个生产者/消费者模型,queue模块是线程安全的,下面的stackoverflow的链接
主要就是介绍了想要实现一个pool,里面存放一些网络的连接,因为如果每次建立连接,系统开销比较大。使用queue模块非常合适。
#!/usr/bin/env python
# -*- coding: utf-8 -*-
"""
http://stackoverflow.com/questions/1514120/python-implementation-of-the-object-pool-design-pattern
"""
class ObjectPool(object):
def __init__(self, queue, auto_get=False):
self._queue = queue
self.item = self._queue.get() if auto_get else None
def __enter__(self):
if self.item is None:
self.item = self._queue.get()
return self.item
def __exit__(self, Type, value, traceback):
if self.item is not None:
self._queue.put(self.item)
self.item = None
def __del__(self):
if self.item is not None:
self._queue.put(self.item)
self.item = None
def main():
try:
import queue
except ImportError: # python 2.x compatibility
import Queue as queue
def test_object(queue):
pool = ObjectPool(queue, True)
print('Inside func: {}'.format(pool.item))
sample_queue = queue.Queue()
sample_queue.put('yam')
with ObjectPool(sample_queue) as obj:
print('Inside with: {}'.format(obj))
print('Outside with: {}'.format(sample_queue.get()))
sample_queue.put('sam')
test_object(sample_queue)
print('Outside func: {}'.format(sample_queue.get()))
if not sample_queue.empty():
print(sample_queue.get())
if __name__ == '__main__':
main()
### OUTPUT ###
# Inside with: yam
# Outside with: yam
# Inside func: sam
# Outside func: sam
网友评论