32 Pandas借助Python爬虫读取HTML网页表格存储到Excel文件
实现目标:
- 网易有道词典可以用于英语单词查询,可以将查询的单词加入到单词本;
- 当前没有导出全部单词列表的功能。为了复习方便,可以爬取所有的单词列表,存入Excel方便复习
涉及技术:
- Pandas:Python语言最强大的数据处理和数据分析库
- Python爬虫:可以将网页下载下来然后解析,使用requests库实现,需要绕过登录验证
import requests
import requests.cookies
import json
import time
import pandas as pd
0. 处理流程
1. 登录网易有道词典的PC版,微信扫码登录,复制cookies到文件
- PC版地址:http://dict.youdao.com/
- Chrome插件可以复制Cookies为Json格式:http://www.editthiscookie.com/
cookie_jar = requests.cookies.RequestsCookieJar()
with open("./course_datas/c32_read_html/cookie.txt") as fin:
cookiejson = json.loads(fin.read())
for cookie in cookiejson:
cookie_jar.set(
name=cookie["name"],
value=cookie["value"],
domain=cookie["domain"],
path=cookie["path"]
)
cookie_jar
<RequestsCookieJar[Cookie(version=0, name='DICT_LOGIN', value='3||1578922508302', port=None, port_specified=False, domain='.youdao.com', domain_specified=True, domain_initial_dot=True, path='/', path_specified=True, secure=False, expires=None, discard=True, comment=None, comment_url=None, rest={'HttpOnly': None}, rfc2109=False), Cookie(version=0, name='DICT_PERS', value='v2|weixin||DICT||web||2592000000||1578922508299||114.244.161.198||wxoXQUDj_FtHSw23tfJWsboPkq38ok||gFnMeLRLQLRpBOMYMhf6LRUf0Mz5P4TLRqSOM6uhfY5RzW0L6ZhHTB0kGRHeukLg40QZOMOMkMwu0gBkfJF0LTL0', port=None, port_specified=False, domain='.youdao.com', domain_specified=True, domain_initial_dot=True, path='/', path_specified=True, secure=False, expires=None, discard=True, comment=None, comment_url=None, rest={'HttpOnly': None}, rfc2109=False), Cookie(version=0, name='DICT_SESS', value='v2|odmTRIUgTmgz6MlEOMqB0TBnfk5h4pZ0Py0MeBP4Q40qynHeuPMOWRpLPMY5RHJuRQykfJBOLQBRPKO4YYOLquR6zhLwBnMYMR', port=None, port_specified=False, domain='.youdao.com', domain_specified=True, domain_initial_dot=True, path='/', path_specified=True, secure=False, expires=None, discard=True, comment=None, comment_url=None, rest={'HttpOnly': None}, rfc2109=False), Cookie(version=0, name='DICT_UGC', value='be3af0da19b5c5e6aa4e17bd8d90b28a|', port=None, port_specified=False, domain='.youdao.com', domain_specified=True, domain_initial_dot=True, path='/', path_specified=True, secure=False, expires=None, discard=True, comment=None, comment_url=None, rest={'HttpOnly': None}, rfc2109=False), Cookie(version=0, name='JSESSIONID', value='abc46uQPL03Au_P0ghF_w', port=None, port_specified=False, domain='.youdao.com', domain_specified=True, domain_initial_dot=True, path='/', path_specified=True, secure=False, expires=None, discard=True, comment=None, comment_url=None, rest={'HttpOnly': None}, rfc2109=False), Cookie(version=0, name='OUTFOX_SEARCH_USER_ID', value='"1678365514@10.108.160.18"', port=None, port_specified=False, domain='.youdao.com', domain_specified=True, domain_initial_dot=True, path='/', path_specified=True, secure=False, expires=None, discard=True, comment=None, comment_url=None, rest={'HttpOnly': None}, rfc2109=False), Cookie(version=0, name='OUTFOX_SEARCH_USER_ID_NCOO', value='1349541628.6994112', port=None, port_specified=False, domain='.youdao.com', domain_specified=True, domain_initial_dot=True, path='/', path_specified=True, secure=False, expires=None, discard=True, comment=None, comment_url=None, rest={'HttpOnly': None}, rfc2109=False), Cookie(version=0, name='ACCSESSIONID', value='8F00E30693F3BD052C9A4F293394BE0A', port=None, port_specified=False, domain='dict.youdao.com', domain_specified=True, domain_initial_dot=False, path='/', path_specified=True, secure=False, expires=None, discard=True, comment=None, comment_url=None, rest={'HttpOnly': None}, rfc2109=False), Cookie(version=0, name='___rl__test__cookies', value='1578922438675', port=None, port_specified=False, domain='dict.youdao.com', domain_specified=True, domain_initial_dot=False, path='/', path_specified=True, secure=False, expires=None, discard=True, comment=None, comment_url=None, rest={'HttpOnly': None}, rfc2109=False)]>
2. 将html都下载下来存入列表
htmls = []
url = "http://dict.youdao.com/wordbook/wordlist?p={idx}&tags="
for idx in range(6):
time.sleep(1)
print("**爬数据:第%d页" % idx)
r = requests.get(url.format(idx=idx), cookies=cookie_jar)
htmls.append(r.text)
**爬数据:第0页
**爬数据:第1页
**爬数据:第2页
**爬数据:第3页
**爬数据:第4页
**爬数据:第5页
htmls[0]
3. 使用Pandas解析网页中的表格
df = pd.read_html(htmls[0])
print(len(df))
print(type(df))
2
<class 'list'>
df[0].head(3)
.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}
<pre><code>.dataframe tbody tr th {
vertical-align: top;
}
.dataframe thead th {
text-align: right;
}
</code></pre>
序号 | 单词 | 音标 | 解释 | 时间 | 分类 | 操作 |
---|
df[1].head(3)
.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}
<pre><code>.dataframe tbody tr th {
vertical-align: top;
}
.dataframe thead th {
text-align: right;
}
</code></pre>
0 | 1 | 2 | 3 | 4 | 5 | 6 | |
---|---|---|---|---|---|---|---|
0 | 1 | agglomerative | NaN | adj. 会凝聚的;[冶] 烧结的,凝结的 | 2020-1-13 | NaN | NaN |
1 | 2 | anatomy | [ə'nætəmɪ] | n. 解剖;解剖学;剖析;骨骼 | 2017-7-17 | NaN | NaN |
2 | 3 | backbone | ['bækbəʊn] | n. 支柱;主干网;决心,毅力;脊椎 | 2017-7-13 | NaN | NaN |
df_cont = df[1]
df_cont.columns = df[0].columns
df_cont.head(3)
.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}
<pre><code>.dataframe tbody tr th {
vertical-align: top;
}
.dataframe thead th {
text-align: right;
}
</code></pre>
序号 | 单词 | 音标 | 解释 | 时间 | 分类 | 操作 | |
---|---|---|---|---|---|---|---|
0 | 1 | agglomerative | NaN | adj. 会凝聚的;[冶] 烧结的,凝结的 | 2020-1-13 | NaN | NaN |
1 | 2 | anatomy | [ə'nætəmɪ] | n. 解剖;解剖学;剖析;骨骼 | 2017-7-17 | NaN | NaN |
2 | 3 | backbone | ['bækbəʊn] | n. 支柱;主干网;决心,毅力;脊椎 | 2017-7-13 | NaN | NaN |
# 收集6个网页的表格
df_list = []
for html in htmls:
df = pd.read_html(html)
df_cont = df[1]
df_cont.columns = df[0].columns
df_list.append(df_cont)
# 合并多个表格
df_all = pd.concat(df_list)
df_all.head(3)
.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}
<pre><code>.dataframe tbody tr th {
vertical-align: top;
}
.dataframe thead th {
text-align: right;
}
</code></pre>
序号 | 单词 | 音标 | 解释 | 时间 | 分类 | 操作 | |
---|---|---|---|---|---|---|---|
0 | 1 | agglomerative | NaN | adj. 会凝聚的;[冶] 烧结的,凝结的 | 2020-1-13 | NaN | NaN |
1 | 2 | anatomy | [ə'nætəmɪ] | n. 解剖;解剖学;剖析;骨骼 | 2017-7-17 | NaN | NaN |
2 | 3 | backbone | ['bækbəʊn] | n. 支柱;主干网;决心,毅力;脊椎 | 2017-7-13 | NaN | NaN |
df_all.shape
(86, 7)
4. 将结果数据输出到Excel文件
df_all[["单词", "音标", "解释"]].to_excel("./course_datas/c32_read_html/网易有道单词本列表.xlsx", index=False)
本文使用 文章同步助手 同步
网友评论