美文网首页
排列组合类

排列组合类

作者: 爱吃虾的雅典娜 | 来源:发表于2017-07-12 09:25 被阅读43次
    /*排列与组合专题:
    
    排列与元素的顺序有关
    组合与顺序无关
    
    permutation: 排列 
    combination: 组合 在组合之前,需要排序
    
    */
    
    public class cp {
        /* 
            LeetCode 46. Permutations
            Given a collection of distinct numbers, return all possible permutations.
            For example, [1,2,3] have the following permutations:
            [
              [1,2,3],
              [1,3,2],
              [2,1,3],
              [2,3,1],
              [3,1,2],
              [3,2,1]
            ]
        */
        public List<List<Integer>> permute (int[] nums) {
            // variable of result
            List<List<Integer>> result = new ArrayList<>();
            // corner 
            if(nums.length == 0 || nums == null) {
                return result;
            }
            // sub-result
            List<Integer> list = new ArrayList<>();
            // recursive
            helper(nums, result, list);
            // return
            return result;
        }
    
        private void helper (int[] nums, List<List<Integer>> result, List<Integer> list) {
            // exit
            if(list.size == nums.length) {
                result.add(new ArrayList(list));
                return;
            }
            // for loop
            for(int i = 0; i < nums.length; i++) {
                if(list.contains(nums[i])) {
                    continue;
                }
                // add 
                list.add(nums[i]);
                // recursive
                helper(nums, result, list);
                // resert
                list.remove(list.size()-1);
            }
        }
    
        /* 
            LeetCode 47. Permutations II
            Given a collection of numbers that might contain duplicates, return all possible unique permutations.
            For example, [1,1,2] have the following unique permutations:
            [
              [1,1,2],
              [1,2,1],
              [2,1,1]
            ]
        */
        public List<List<Integer>> permuteUnique(int[] nums) {
            List<List<Integer>> result = new ArrayList<>();
            if(nums.length == 0 || nums == null) {
                return result;
            }
            List<Integer> list = new ArrayList<>();
            int[] visited = new int[nums.length];
            Arrays.sort(nums);
            helper(nums, result, list, visited);
            return result;
        }
    
        private void helper(int[] nums, List<List<Integer>> result, 
                            List<Integer> list, int[] visited) {
            if(list.size() == nums.length) {
                result.add(new ArrayList(list));
                return;
            }
            for(int i = 0; i < nums.length; i ++) {
                if(visited[i] == 1 || (i != 0 && nums[i] == nums[i-1] && visited[i-1] == 0)) {
                    continue;
                }
                visited[i] = 1;
                list.add(nums[i]);
                helper(nums, result, list, visited);
                list.remove(list.size() - 1);
                visited[i] = 0;
            }
        }
    
        /*
            LeetCode 77. Combinations
            Given two integers n and k, 
            return all possible combinations of k numbers out of 1 ... n.
            For example, if n = 4 and k = 2, a solution is:
            [
              [2,4],
              [3,4],
              [2,3],
              [1,2],
              [1,3],
              [1,4],
            ]
        */
        public List<List<Integer>> combinations (int n, int k) {
            List<List<Integer>> result = new ArrayList<>();
            if(n < k || n == 0 || k == 0) {
                return result;
            }
            List<Integer> solution = new ArrayList<>();
            helper(n, k, 1, result, solution);
            return result;
        }
    
        private void helper(int n, int k, int start, 
                            List<List<Integer>> result,
                            List<Integer> solution) {
            if(solution.size() == k) {
                result.add(new ArrayList(solution));
                return;
            }
            for(int i = start; i <= n; i ++) {
                solution.add(i);
                helper(n, k, i + 1, result, solution);
                solution.remove(solution.size() - 1);
            }
        }
    
        /*
            LeetCode 39. Combination Sum
            Given a set of candidate numbers (C) 
            (without duplicates) and a target number (T), 
            find all unique combinations in C 
            where the candidate numbers sums to T.
            
            The same repeated number may be chosen from 
            C unlimited number of times.
    
            Note:
            All numbers (including target) will be positive integers.
            The solution set must not contain duplicate combinations.
            For example, given candidate set [2, 3, 6, 7] and target 7, 
            A solution set is: 
            [
              [7],
              [2, 2, 3]
            ]
        */
        public List<List<Integer>> combinationSum(int[] candidates, int target) {
            List<List<Integer>> result = new ArrayList<>();
            if (candidates == null || candidates.length == 0) {
                return result;
            }
            List<Integer> combination = new ArrayList<>();
            Arrays.sort(candidates);
            dfs(candidates, target, 0, combination, result);
            return result;
        }
    
        public static void dfs(int[] candidates, int target, int index, 
                                List<Integer> combination,
                                List<List<Integer>> result) {
            if (target == 0) {
                result.add(new ArrayList<Integer>(combination));
                return;
            }
            for (int i = index; i < candidates.length; i ++) {
                if (candidates[i] > target) {
                    break;
                }
    //          if (i != index && candidates[i] == candidates[i-1]) {
    //              continue;
    //          }
                combination.add(candidates[i]);
                dfs(candidates, target - candidates[i], i, combination, result);
                combination.remove(combination.size()-1);
            }
        }
    
        /*
            40. Combination Sum II
            Given a collection of candidate numbers (C) and a target number (T), 
            find all unique combinations in C where the candidate numbers sums to T.
            Each number in C may only be used once in the combination.
            Note:
                All numbers (including target) will be positive integers.
                The solution set must not contain duplicate combinations.
                For example, given candidate set [10, 1, 2, 7, 6, 1, 5] and target 8, 
                A solution set is: 
                [
                  [1, 7],
                  [1, 2, 5],
                  [2, 6],
                  [1, 1, 6]
                ]
        */
        public List<List<Integer>> combinationSum2(int[] candidates, int target) {
            List<List<Integer>> result = new ArrayList<>();
            List<Integer> combination = new ArrayList<>();
            if (candidates == null) {
                return result;
            }
            Arrays.sort(candidates);
            dfs(candidates, target, 0, combination, result);
            return result;
        }
    
        public static void dfs(int[] candidates, int target, int index, 
                               List<Integer> combination,
                               List<List<Integer>> result) {
            if (target == 0) {
                result.add(new ArrayList<Integer>(combination));
                return;
            }
            for (int i = index; i < candidates.length; i ++) {
                if (target < candidates[i]) {
                    break;
                }
                if (i != index && candidates[i] == candidates[i-1]) {
                    continue;
                }
                combination.add(candidates[i]);
                dfs(candidates, target - candidates[i], i + 1, combination, result);
                combination.remove(combination.size()-1);
            }
        }
    
        /*
            216. Combination Sum III
            Find all possible combinations of k numbers 
            that add up to a number n, 
            given that only numbers from 1 to 9 can be used 
            and each combination should be a unique set of numbers.
    
            Example 1: Input:  k = 3, n = 7
                       Output: [[1,2,4]]
            Example 2: Input:  k = 3, n = 9
                       Output: [[1,2,6], [1,3,5], [2,3,4]]
        */
        public List<List<Integer>> combinationSum3(int k, int n) {
            List<List<Integer>> result = new ArrayList<>();
            List<Integer> combination = new ArrayList<>();
            if (k > n || n == 0 || k == 0) {
                return result;
            }
            dfs(k, n, 1, result, combination);
            return result;
        }
    
        public void dfs(int k, int n, int index, List<List<Integer>> result, List<Integer> combination) {
            if (n == 0 && combination.size() == k) {
                result.add(new ArrayList<Integer>(combination));
                return;
            }
            for (int i = index; i <= 9; i ++) {
                combination.add(i);
                dfs(k, n-i, i+1, result, combination);
                combination.remove(combination.size()-1);
            }
        }
    }
    

    相关文章

      网友评论

          本文标题:排列组合类

          本文链接:https://www.haomeiwen.com/subject/plgvhxtx.html