美文网首页
【NLP保姆级教程】手把手带你RNN文本分类(附代码)

【NLP保姆级教程】手把手带你RNN文本分类(附代码)

作者: kaiyuan_nlp | 来源:发表于2020-03-07 17:43 被阅读0次

    本文首发于微信公众号:NewBeeNLP


    写在前面

    这是NLP保姆级教程的第二篇----基于RNN的文本分类实现(Text RNN)

    参考的的论文是来自2016年复旦大学IJCAI上的发表的关于循环神经网络在多任务文本分类上的应用:Recurrent Neural Network for Text Classification with Multi-Task Learning[1]

    论文概览

    在先前的许多工作中,模型的学习都是基于单任务,对于复杂的问题,也可以分解为简单且相互独立的子问题来单独解决,然后再合并结果,得到最初复杂问题的结果。这样做看似合理,其实是不正确的,因为现实世界中很多问题不能分解为一个一个独立的子问题,即使可以分解,各个子问题之间也是相互关联的,通过一些共享因素或「共享表示(share representation)」 联系在一起。把现实问题当做一个个独立的单任务处理,往往会忽略了问题之间所富含的丰富的关联信息。

    上面的问题引出了本文的重点——「多任务学习(Multi-task learning)」,把多个相关(related)的任务(task)放在一起学习。多个任务之间共享一些因素,它们可以在学习过程中,共享它们所学到的信息,这是单任务学习没有具备的。相关联的多任务学习比单任务学习能去的更好的泛化(generalization)效果。本文基于 RNN 循环神经网络,提出三种不同的信息共享机制,整体网络是基于所有的任务共同学习得到。

    下面具体介绍一下文章中的三个模型。

    Model I: Uniform-Layer Architecture

    其中等号右侧第一项和第二项分别表示该任务「特有」的word embedding和该模型中「共享」的word embedding,两者做一个concatenation。

    LSTM网络层是所有任务所共享的,对于任务m的最后sequence representation为LSTM的输出:

    Model II: Coupled-Layer Architecture

    为了更好地控制在不同LSTM layer之间的信息流动,作者提出了一个global gating unit,使得模型具有决定信息流动程度的能力。

    为此,他们改写了LSTM中的表达式:

    其中,

    Model III: Shared-Layer Architecture

    模型表现

    论文作者在4个数据集上对上述模型做了评价,并和其他state-of-the-art的网络模型进行了对比,均显示最好的效果。

    代码实现

    RNN的代码框架和上一篇介绍的CNN类似,首先定义一个RNN类来实现论文中的模型

    class RNN(BaseModel):
    """
    A RNN class for sentence classification
    With an embedding layer + Bi-LSTM layer + FC layer + softmax
    """
    def __init__(self, sequence_length, num_classes, vocab_size,
    embed_size, learning_rate, decay_steps, decay_rate,
    hidden_size, is_training, l2_lambda, grad_clip,
    initializer=tf.random_normal_initializer(stddev=0.1)):

    这里的模型包括了一层embedding,一层双向LSTM,一层全连接层最后接上一个softmax分类函数。

    然后依次定义模型,训练,损失等函数在后续调用。

    def inference(self):
    """
    1. embedding layer
    2. Bi-LSTM layer
    3. concat Bi-LSTM output
    4. FC(full connected) layer
    5. softmax layer
    """
    # embedding layer
    with tf.name_scope('embedding'):
    self.embedded_words = tf.nn.embedding_lookup(self.Embedding, self.input_x)

    # Bi-LSTM layer
    with tf.name_scope('Bi-LSTM'):
    lstm_fw_cell = rnn.BasicLSTMCell(self.hidden_size)
    lstm_bw_cell = rnn.BasicLSTMCell(self.hidden_size)

    if self.dropout_keep_prob is not None:
    lstm_fw_cell = rnn.DropoutWrapper(lstm_fw_cell, output_keep_prob=self.dropout_keep_prob)
    lstm_bw_cell = rnn.DropoutWrapper(lstm_bw_cell, output_keep_prob=self.dropout_keep_prob)

    outputs, output_states = tf.nn.bidirectional_dynamic_rnn(lstm_fw_cell, lstm_bw_cell,
    self.embedded_words,
    dtype=tf.float32)
    output = tf.concat(outputs, axis=2)
    output_last = tf.reduce_mean(output, axis=1)

    # FC layer
    with tf.name_scope('output'):
    self.score = tf.matmul(output_last, self.W_projection) + self.b_projection
    return self.score

    def loss(self):
    # loss
    with tf.name_scope('loss'):
    losses = tf.nn.softmax_cross_entropy_with_logits(labels=self.input_y, logits=self.score)
    data_loss = tf.reduce_mean(losses)
    l2_loss = tf.add_n([tf.nn.l2_loss(cand_v) for cand_v in tf.trainable_variables()
    if 'bias' not in cand_v.name]) * self.l2_lambda
    data_loss += l2_loss
    return data_loss

    def train(self):
    learning_rate = tf.train.exponential_decay(self.learning_rate, self.global_step,
    self.decay_steps, self.decay_rate, staircase=True)
    optimizer = tf.train.AdamOptimizer(learning_rate)
    grads_and_vars = optimizer.compute_gradients(self.loss_val)

    grads_and_vars = [(tf.clip_by_norm(grad, self.grad_clip), val) for grad, val in grads_and_vars]

    train_op = optimizer.apply_gradients(grads_and_vars, global_step=self.global_step)
    return train_op

    训练部分的数据集这里就直接采用CNN那篇文章相同的数据集(懒...),预处理的方式与函数等都是一样的,,,

    def train(x_train, y_train, vocab_processor, x_dev, y_dev):
    with tf.Graph().as_default():
    session_conf = tf.ConfigProto(
    # allows TensorFlow to fall back on a device with a certain operation implemented
    allow_soft_placement= FLAGS.allow_soft_placement,
    # allows TensorFlow log on which devices (CPU or GPU) it places operations
    log_device_placement=FLAGS.log_device_placement
    )
    sess = tf.Session(config=session_conf)
    with sess.as_default():
    # initialize cnn
    rnn = RNN(sequence_length=x_train.shape[1],
    num_classes=y_train.shape[1],
    vocab_size=len(vocab_processor.vocabulary_),
    embed_size=FLAGS.embed_size,
    l2_lambda=FLAGS.l2_reg_lambda,
    is_training=True,
    grad_clip=FLAGS.grad_clip,
    learning_rate=FLAGS.learning_rate,
    decay_steps=FLAGS.decay_steps,
    decay_rate=FLAGS.decay_rate,
    hidden_size=FLAGS.hidden_size
    )


    # output dir for models and summaries
    timestamp = str(time.time())
    out_dir = os.path.abspath(os.path.join(os.path.curdir, 'run', timestamp))
    if not os.path.exists(out_dir):
    os.makedirs(out_dir)
    print('Writing to {} \n'.format(out_dir))

    # checkpoint dir. checkpointing – saving the parameters of your model to restore them later on.
    checkpoint_dir = os.path.abspath(os.path.join(out_dir, FLAGS.ckpt_dir))
    checkpoint_prefix = os.path.join(checkpoint_dir, 'model')
    if not os.path.exists(checkpoint_dir):
    os.makedirs(checkpoint_dir)
    saver = tf.train.Saver(tf.global_variables(), max_to_keep=FLAGS.num_checkpoints)

    # Write vocabulary
    vocab_processor.save(os.path.join(out_dir, 'vocab'))

    # Initialize all
    sess.run(tf.global_variables_initializer())


    def train_step(x_batch, y_batch):
    """
    A single training step
    :param x_batch:
    :param y_batch:
    :return:
    """
    feed_dict = {
    rnn.input_x: x_batch,
    rnn.input_y: y_batch,
    rnn.dropout_keep_prob: FLAGS.dropout_keep_prob
    }
    _, step, loss, accuracy = sess.run(
    [rnn.train_op, rnn.global_step, rnn.loss_val, rnn.accuracy],
    feed_dict=feed_dict
    )
    time_str = datetime.datetime.now().isoformat()
    print("{}: step {}, loss {:g}, acc {:g}".format(time_str, step, loss, accuracy))


    def dev_step(x_batch, y_batch):
    """
    Evaluate model on a dev set
    Disable dropout
    :param x_batch:
    :param y_batch:
    :param writer:
    :return:
    """
    feed_dict = {
    rnn.input_x: x_batch,
    rnn.input_y: y_batch,
    rnn.dropout_keep_prob: 1.0
    }
    step, loss, accuracy = sess.run(
    [rnn.global_step, rnn.loss_val, rnn.accuracy],
    feed_dict=feed_dict
    )
    time_str = datetime.datetime.now().isoformat()
    print("dev results:{}: step {}, loss {:g}, acc {:g}".format(time_str, step, loss, accuracy))

    # generate batches
    batches = data_process.batch_iter(list(zip(x_train, y_train)), FLAGS.batch_size, FLAGS.num_epochs)
    # training loop
    for batch in batches:
    x_batch, y_batch = zip(*batch)
    train_step(x_batch, y_batch)
    current_step = tf.train.global_step(sess, rnn.global_step)
    if current_step % FLAGS.validate_every == 0:
    print('\n Evaluation:')
    dev_step(x_dev, y_dev)
    print('')

    path = saver.save(sess, checkpoint_prefix, global_step=current_step)
    print('Save model checkpoint to {} \n'.format(path))

    def main(argv=None):
    x_train, y_train, vocab_processor, x_dev, y_dev = prepocess()
    train(x_train, y_train, vocab_processor, x_dev, y_dev)

    if __name__ == '__main__':
    tf.app.run()

    「完整代码可以在公众号后台回复"RNN2016"获取。」

    本文参考资料

    [1]Recurrent Neural Network for Text Classification with Multi-Task Learning: https://arxiv.org/abs/1605.05101

    END -

      【NLP保姆级教程】手把手带你CNN文本分类(附代码)

      Transformers Assemble(PART III)

      BERT源码分析(PART III)

    本文首发于微信公众号:NewBeeNLP

    相关文章

      网友评论

          本文标题:【NLP保姆级教程】手把手带你RNN文本分类(附代码)

          本文链接:https://www.haomeiwen.com/subject/pmchdhtx.html