美文网首页Python数据分析与机器学习笔记
Python实现逻辑回归与梯度下降策略

Python实现逻辑回归与梯度下降策略

作者: python机器学习学习笔记 | 来源:发表于2019-01-23 12:40 被阅读0次

    我们将建立一个逻辑回归模型来预测一个学生是否被大学录取。假设你是一个大学的管理员,你想根据两次考试的结果来决定每个申请人的录取机会。你有以前申请人的历史数据,你可以用它作为逻辑回归的训练集,对于每一个训练例子,你有两个考试的申请人的分数和录取决定。为了做到这一点,我们将建立一个分类模型,根据考试成绩估计入学概率。

    import pandas as pd

    import numpy as np

    import matplotlib.pyplot as plt

    plt.rcParams['font.sans-serif']=['SimHei'] # 用来正常显示中文标签

    plt.rcParams['axes.unicode_minus']=False # 用来正常显示负号

    data = pd.read_csv("grade.csv")

    Pass = data[data["Admitted"] == 1] # 获取及格的数据

    noPass = data[data["Admitted"] == 0] # 获取不及格的数据

    fig, ax = plt.subplots()

    ax.scatter(Pass["EXAM 1"], Pass["EXAM 2"], s = 30, c = 'b', marker = 'o', label = 'PASS')

    ax.scatter(noPass["EXAM 1"], noPass["EXAM 2"], s = 30, c = 'r', marker = 'x', label = 'noPASS')

    ax.legend(loc = 2)

    ax.set_xlabel('EXAM 1 score')

    ax.set_ylabel('EXAM 2 score')

    ax.set_title('逻辑回归案例')

    plt.show()

    接下来就是算法的实现

    目标:建立分类器(求解出三个参数e1,e2,e3)

    设定阈值,根据阈值判断录取结果

    要完成的模块

    1.sigmoid:映射到概率的函数

    2.model:返回预测结果值

    3.cost:根据参数计算损失

    4.gradient:计算每个参数的梯度方向

    5.descent:进行参数更新

    6.accuracy:计算精度

    # sigmoid:映射到概率的函数

    def sigmoid(z):

        return 1 / (1 + np.exp(-z))

    # model:返回预测结果值

    def model(X, theta):

        return sigmoid(np.dot(X, theta.T))

    data.insert(0, 'Ones', 1)

    orig_data = data.as_matrix()

    cols = orig_data.shape[1]

    X = orig_data[:, 0:cols-1]

    y = orig_data[:, cols-1:cols]

    theta = np.zeros([1, 3])

    # cost:根据参数计算损失

    def cost(X, y, theta):

        left = np.multiply(-y, np.log(model(X, theta)))

        right = np.multiply(1-y, np.log(1 - model(X, theta)))

        return np.sum(left - right) / (len(X))

    # gradient:计算每个参数的梯度方向

    def gradient(X, y, theta):

        grad = np.zeros(theta.shape)

        error = (model(X, theta) - y).ravel()

        for j in range(len(theta.ravel())):

            term = np.multiply(error, X[:, j])

            grad[0, j] = np.sum(term) / len(X)

        return grad

    STOP_ITER = 0

    STOP_COST = 1

    STOP_GRAD = 2

    # 设定三种不同的停止策略

    def stopCriterion(type, value, threshold):

        if type == STOP_ITER:

            return value > threshold

        elif type == STOP_COST:

            return abs(value[-1] - value[-2]) < threshold

        elif type == STOP_GRAD:

            return np.linalg.norm(value) < threshold

    # 将数据打乱

    def shuffleData(data1):

        shuffle(data1)

        cols = data1.shape[1]

        X = data1[:, 0:cols-1]

        y = data1[:, cols-1:]

        return X, y

    # 梯度下降求解

    def descent(data, theta, batchSize, stopType, thresh, alpha):

        init_time = time.time()

        i = 0 # 迭代次数

        k = 0 # batch

        X, y = shuffleData(data)

        grad = np.zeros(theta.shape) # 计算的梯度

        costs = [cost(X, y, theta)] # 损失值

        while True:

            grad = gradient(X[k:k+batchSize], y[k:k+batchSize], theta)

            k += batchSize # 取batch数量个数据

            if k >= n:

                k = 0

                X, y =shuffleData(data) # 重新打乱

            theta = theta - alpha * grad # 更新参数

            costs.append(cost(X, y, theta)) # 计算新的损失

            i += 1

            if stopType == STOP_ITER:

                value = i

            elif stopType == STOP_COST:

                value = costs

            elif stopType == STOP_GRAD:

                value = grad

            if stopCriterion(stopType, value, thresh):

                break

        return theta, i-1, costs, grad, time.time() - init_time

    def runExpe(data, theta, batchSize, stopType, thresh, alpha):

        theta, iter, costs, grad, dur = descent(data, theta, batchSize, stopType, thresh, alpha)

        name = "Original" if (data[:,1] > 2).sum() > 1 else "Scaled"

        name += "data - learning rate: {} - ".format(alpha)

        if batchSize == n:

            strDescType = "Gradient"

        elif batchSize == 1:

            strDescType = "Stochastic"

        else:

            strDescType = "MiNi-batch({})".format(batchSize)

        name += strDescType + "descent - Stop:"

        if stopType == STOP_ITER:

            strStop = "{} iterations".format(thresh)

        elif stopType == STOP_COST:

            strStop = "costs change < {}".format(thresh)

        else:

            strStop = "gradient norm < {}".format(thresh)

        name += strStop

        print("***{}\nTheta:{} - Iter: {} - Last cost: {:03.2f} - Duration: {:03.2f}s".format(name,theta,iter,costs[-1],dur))

        fig, ax = plt.subplots()

        ax.plot(np.arange(len(costs)), costs, 'r')

        ax.set_xlabel('Iterations')

        ax.set_ylabel('Cost')

        ax.set_title(name.upper() + '- Error vs. Iteration')

        plt.show()

        return theta

    if __name__ == '__main__':

        n = 100

        # runExpe(orig_data,theta,n,STOP_ITER,thresh=5000,alpha=0.0001)

        # 根据损失值停止

        # runExpe(orig_data, theta, n, STOP_COST, thresh=0.000001, alpha=0.001)

        # 根据梯度变化停止

        runExpe(orig_data, theta, n, STOP_GRAD, thresh=0.05, alpha=0.001)

    相关文章

      网友评论

        本文标题:Python实现逻辑回归与梯度下降策略

        本文链接:https://www.haomeiwen.com/subject/pmyjjqtx.html