美文网首页互联网的世界
硅谷创业十四问(转)

硅谷创业十四问(转)

作者: 布小姐 | 来源:发表于2015-02-04 16:06 被阅读44次

    http://www.jianshu.com/p/17a3a595ff5a
    以下没摘全。原文内多图,全程干货

    技术趋势炒作图.png

    技术趋势炒作图

    看了那么多高估值公司,很多人都觉得非常疯狂,这是不是很大泡沫了,泡沫是不是要破了,是很多人的疑问。我认为在硅谷这个充满梦想的地方,投资人鼓励创业者大胆去做同样也助长了泡沫,很多项目在几个月的时间就会估值翻 2,3 倍,如 Uber,Snapchat 上我也惊讶于他们的巨额融资规模。那么这张图就是讲“新兴技术炒作”周期,把各类技术按照技术成熟度和期望值分类。

    创新萌芽 Innovation Trigger”、“期望最顶点 Peak ofInflated Expectation”、“下调预期至低点 Trough of Disillusion”、“回归理想 Slope ofEnlightenment”、“生产率平台 Plateau of Productivity”,越往左,技术约新潮,越处于概念阶段;越往右,技术约成熟,约进入商业化应用,发挥出提高生产率的效果。纵轴代表预期值,人们对于新技术通常会随着认识的深入,预期不断升温,伴之以媒体炒作而到达顶峰;随之因技术瓶颈或其他原因,预期逐渐冷却至低点,但技术技术成熟后,期望又重新上升,重新积累用户,然后就到了可持续增长的健康轨道上来。

    Gartner 公司每年发布技术趋势炒作图。今年和去年的图对比显示,物联网、自动驾驶汽车、消费级 3D 打印、自然语言问答等概念正在处于炒作的顶峰。而大数据已从顶峰滑落,NFC 和云计算接近谷底。

    3、未来,高科技创业的趋势是什么?

    我先提一个最近看的一部电影《Imitation Game》,讲计算机逻辑的奠基者艾伦图灵(计算机届最高奖以他命名)艰难的一生,他当年为破译德军密码制作了图灵机为二战胜利作出卓越贡献,挽回几千万人的生命,可在那个时代因为同性恋被判化学阉割,自杀结束了短暂的 42 岁生命。他的一个伟大贡献就是在人工智能的开拓工作,他提出图灵测试(Turing Test),测试某机器是否能表现出与人等价或无法区分的智能。

    今天人工智能已经有了很大进步,从专家系统到基于统计的学习,从支持向量机到神经网络深度学习,每一步都带领机器智能走向下一个阶梯。

    在 Google 资深科学家吴军博士(数学之美,浪潮之巅作者),他提出当前技术发展三个趋势,第一,云计算和和移动互联网,这是正在进行时;第二,机器智能,现在开始发生,但对社会的影响很多人还没有意识到;第三,大数据和机器智能结合,这是未来时,一定会发生,有公司在做,但还没有太形成规模。他认为未来机器会控制 98%的人,而现在我们就要做个选择,怎么成为剩下的 2%?

    4、为什么大数据和机器智能结合的未来一定会到来?

    其实在工业革命之前(1820 年),世界人均 GDP 在 1800 年前的两三千年里基本没有变化,而从 1820 年到 2001 年的 180 年里,世界人均 GDP 从原来的 667 美元增长到 6049 美元。由此足见,工业革命带来的收入增长的确是翻天覆地的。这里面发生了什么,大家可以去思考一下。但人类的进步并没有停止或者说稳步增长,在发明了电力,电脑,互联网,移动互联网,全球年 GDP 增长从万分之 5 到 2%,信息也是在急剧增长,根据计算,最近两年的信息量是之前 30 年的总和,最近 10 年是远超人类所有之前累计信息量之和。在计算机时代,有个著名的摩尔定律,就是说同样成本每隔 18 个月晶体管数量会翻倍,反过来同样数量晶体管成本会减半,这个规律已经很好的 match 了最近 30 年的发展,并且可以衍生到很多类似的领域:存储、功耗、带宽、像素。

    冯诺伊曼是 20 世纪最重要的数学家之一,在现代计算机、博弈论和核武器等诸多领域内有杰出建树的最伟大的科学全才之一。他提出(技术)将会逼近人类历史上的某种本质的奇点,在那之后 全部人类行为都不可能以我们熟悉的面貌继续存在。这就是著名的奇点理论。目前会越来越快指数性增长,美国未来学家 Ray Kurzweil 称人类能够在 2045 年实现数字化永生,他自己也创办奇点大学,相信随着信息技术、无线网、生物、物理等领域的指数级增长,将在 2029 年实现人工智能,人的寿命也将会在未来 15 年得到大幅延长。

    5、国外值得关注的大数据公司都有哪些?国内又有哪些?

    Big Data 公司列表

    这是 2014 年总结的 Big Data 公司列表,我们大致可以分成基础架构和应用,而底层都是会用到一些通用技术,如 Hadoop,Mahout,HBase,Cassandra,我在下面也会涵盖。我可以举几个例子,在分析这一块,cloudera,hortonworks,mapr 作为 Hadoop 的三剑客,一些运维领域,mangodb,couchbase 都是 nosql 的代表,作为服务领域 AWS 和 Google BigQuery 剑拔弩张,在传统数据库,Oracle 收购了 MySQL,DB2 老牌银行专用,Teradata 做了多年数据仓库。上面的 Apps 更多,比如社交消费领域 Google, Amazon, Netflix, Twitter, 商业智能:SAP,GoodData,一些在广告媒体领域:TURN,Rocketfuel,做智能运维 sumologic 等等。去年的新星 Databricks 伴随着 Spark 的浪潮震撼 Hadoop 的生态系统。

    对于迅速成长的中国市场,大公司也意味着大数据,BAT 三家都是对大数据的投入也是不惜余力。

    我 5 年前在百度的时候,就提出框计算的东东,最近两年他们成立了硅谷研究院,挖来 Andrew Ng 作为首席科学家,研究项目就是百度大脑,在语音、图片识别大幅提高精确度和召回率,最近还做了个无人自行车,非常有趣。腾讯作为最大的社交应用对大数据也是情有独钟,自己研发了 C++ 平台的海量存储系统。淘宝去年双十一主战场,2 分钟突破 10 亿,交易额突破 571 亿,背后是有很多故事,当年在百度做 Pyramid(按 Google 三辆马车打造的金字塔三层分布式系统)的有志之士,继续在 OceanBase 创造神话。而阿里云当年备受争议,马云也怀疑是不是被王坚忽悠,最后经历了双十一的洗礼证明了阿里云的靠谱。小米的雷军对大数据也是寄托厚望,一方面这么多数据几何级数增长,另一方面存储带宽都是巨大成本,没价值就会破产。

    相关文章

      网友评论

        本文标题:硅谷创业十四问(转)

        本文链接:https://www.haomeiwen.com/subject/pnyrxttx.html