美文网首页
RSA 数学原理

RSA 数学原理

作者: Kare | 来源:发表于2018-12-09 16:11 被阅读5次

提起RSA大家一定不陌生,在开发中经常使用,也经常听同事说道。

前奏

对称加密

话说很久以前,人们就懂的了加密这个技术。在战争时期,间谍就会拿着 密文密匙 来对信息就行传递。
这种简单的 密文 + 密匙(key) 就是 对称加密

加密: 明文 + 密匙

解密: 密文 + 密匙

非对称加密

由于这种加密方式过于简单,所以后来引入了数学算法。
RSA 就是由特殊的数学算法构成的,也是非对称加密算法。非对称加密需要两个密钥:公钥(public key) + 私钥(private key)

用公钥加密,私钥解密

私钥加密,公钥解密

相关数学原理

欧拉定理

如果两个正整数m和n互质,那么m的φ(n)次方减去1,可以被n整除。

image
一下是几种情况
  • 定理0 算术函数f如果满足对于任意两个互质的正整数m和n,均有f(mn)=f(m)f(n),就称f为积性函数(或乘性函数)。
    如果对于任意两个正整数m和n,均有f(mn)=f(m)f(n),就称为完全积性函数。

  • 定理1 对于素数p,ϕ(p)=p−1。

  • 定理2 ϕ(pn)=pn−pn−1,因为素数幂pn不互质的只有p的倍数,一共有pn/p=pn−1个。

  • 定理3 若m、n互质,ϕ(mn)=ϕ(m)ϕ(n),所以欧拉函数是积性函数。
    因为mn互质NN,和m互质的数乘上和n互质的数就会和mn互质。

  • 定理4 设n=p1a1p2a2...pkak为正整数n的素数幂分解,那么ϕ(n)=n(1−1/p1)(1−1/p2)...(1−1/pk)。
    由定理2,ϕ(pn)=pn−pn−1=pn (1-1/p),又由定理3,ϕ(n)=p1a1p2a2...pkak(1−1/p1)(1−1/p2)...(1−1/pk)=n(1−1/p1)(1−1/p2)...(1−1/pk)

例如: 
ϕ(8) = ϕ(2^3) = 2^3 - 2^(2-1) = 8 - 4 = 4
ϕ(15) = ϕ(3) * ϕ(5) = 2 * 4 = 8

费马小定律

欧拉定理的特殊情况:如果两个正整数m和n互质,而且n为质数!那么φ(n)结果就是n-1。

image

模反元素

如果两个正整数e和x互质,那么一定可以找到整数d,使得 ed-1 被x整除。
那么d就是e对于x的“模反元素”

image

迪菲赫尔曼密匙交换原理

image

那么,通过一系列的数学转换,最终得出了RSA算法

image
公钥:e 和 n
私钥:d 和 n
明文:m
密文:c

说明:

  • n会非常大,长度一般为1024个二进制位。(目前人类已经分解的最大整数,232个十进制位,768个二进制位)
  • 由于需要求出φ(n),所以根据欧函数特点,最简单的方式n 由两个质数相乘得到: 质数:p1、p2
    Φ(n) = (p1 -1) * (p2 - 1)
  • 最终由φ(n)得到e 和 d 。

总共生成6个数字:p1、p2、n、φ(n)、e、d

关于RSA的安全:

除了公钥用到了n和e 其余的4个数字是不公开的。
目前破解RSA得到d的方式如下:

  • 要想求出私钥 d 。由于ed = φ(n)k + 1。要知道e和φ(n);
  • e是知道的,但是要得到 φ(n),必须知道p1 和 p2。
  • 由于 n=p1*p2。只有将n因数分解才能算出。

那么RSA有优点和弊端是什么了?

优点

  • 相对安全

缺点

  • 速度慢,耗时(因为,起内部原理是一系列的数学计算)
  • 加密数据量小

相关文章

  • RSA 数学原理

    提起RSA大家一定不陌生,在开发中经常使用,也经常听同事说道。 前奏 对称加密 话说很久以前,人们就懂的了加密这个...

  • RSA数学原理

    生成公私钥过程 随机选择两个大的质数p、q 由质数p和q相乘得到n, 由欧拉函数求出φ(n), 随机选择与r互质的...

  • RSA算法详解

    前言 总括: 本文详细讲述了RSA算法详解,包括内部使用数学原理以及产生的过程。 原文博客地址:RSA算法详解 知...

  • RSA加密/解密

    RSA数学原理 原根 3 ^ x mod 17 = y 1 <= x < 17 1 <= y < 17 如果3的x...

  • iOS逆向之RSA加密(上)

    本文主要介绍RSA的数学原理、以及RSA的代码演示 引子 密码学 是指研究信息加密、破解密码的技术科学。最早可以追...

  • RSA加密的数学原理

    RSA非对称加密概述   该加密方式需要两个秘钥:公开的秘钥简称公钥(publickey)和私钥(privatek...

  • 五、RSA的数学原理

    问题:有没有加密容易.破解很难数学运算?,如下:3? mod 17 = 12你是不是算了很久呢?答案是:313 ...

  • (一) RSA原理

    RSA 1. 数学原理 1.1 离散对数问题 我们要想一个加密容易,破解很难的数学运算。 方案: 我们知道?后计算...

  • RSA算法数学原理(摘录)

    RSA加密算法是最常用的非对称加密算法,CFCA在证书服务中离不了它。但是有不少新来的同事对它不太了解,恰好看到一...

  • RSA算法原理全面解析

    网上写 RSA 算法原理的文章不少,但是基本上要么忽略了数学原理的说明,要么缺少实际的可运行的例子,为此特写了此文...

网友评论

      本文标题:RSA 数学原理

      本文链接:https://www.haomeiwen.com/subject/ppckhqtx.html