按位与运算符(&)
参加运算的两个数据,按二进制位进行“与”运算。
运算规则:0&0=0; 0&1=0; 1&0=0; 1&1=1;
即:两位同时为“1”,结果才为“1”,否则为0
例如:3&5 即 0000 0011& 0000 0101 = 00000001 因此,3&5的值得1。
另,负数按补码形式参加按位与运算。
“与运算”的特殊用途:
(1)清零。如果想将一个单元清零,即使其全部二进制位为0,只要与一个各位都为零的数值相与,结果为零。
(2)取一个数中指定位
方法:找一个数,对应X要取的位,该数的对应位为1,其余位为零,此数与X进行“与运算”可以得到X中的指定位。
例:设X=10101110,
取X的低4位,用 X & 0000 1111 = 00001110 即可得到;
还可用来取X的2、4、6位。
按位或运算符(|)
参加运算的两个对象,按二进制位进行“或”运算。
运算规则:0|0=0; 0|1=1; 1|0=1; 1|1=1;
即 :参加运算的两个对象只要有一个为1,其值为1。
例如:3|5 即 00000011 | 0000 0101 = 00000111 因此,3|5的值得7。
另,负数按补码形式参加按位或运算。
“或运算”特殊作用:
(1)常用来对一个数据的某些位置1。
方法:找到一个数,对应X要置1的位,该数的对应位为1,其余位为零。此数与X相或可使X中的某些位置1。
例:将X=10100000的低4位置1 ,用X | 0000 1111 = 1010 1111即可得到。
异或运算符(^)
参加运算的两个数据,按二进制位进行“异或”运算。
运算规则:0^0=0; 0^1=1; 1^0=1; 1^1=0;
即:参加运算的两个对象,如果两个相应位为“异”(值不同),则该位结果为1,否则为0。
“异或运算”的特殊作用:
(1)使特定位翻转找一个数,对应X要翻转的各位,该数的对应位为1,其余位为零,此数与X对应位异或即可。
例:X=10101110,使X低4位翻转,用X ^0000 1111 = 1010 0001即可得到。
(2)与0相异或,保留原值 ,X ^ 00000000 = 1010 1110。
下面重点说一下按位异或,异或其实就是不进位加法,如1+1=0,,0+0=0,1+0=1。
异或的几条性质:
1、交换律
2、结合律(即(ab)c == a(bc))
3、对于任何数x,都有xx=0,x0=x
4、自反性: abb=a^0=a;
异或运算最常见于多项式除法,不过它最重要的性质还是自反性:A XOR B XOR B = A,即对给定的数A,用同样的运算因子(B)作两次异或运算后仍得到A本身。这是一个神奇的性质,利用这个性质,可以获得许多有趣的应用。 例如,所有的程序教科书都会向初学者指出,要交换两个变量的值,必须要引入一个中间变量。但如果使用异或,就可以节约一个变量的存储空间: 设有A,B两个变量,存储的值分别为a,b,则以下三行表达式将互换他们的值 表达式 (值) :
a=a^b;
b=b^a;
a=a^b;
网友评论