离线数据同步
DataX
阿里的Datax是比较优秀的产品,基于python,提供各种数据村塾的读写插件,多线程执行,使用起来也很简单,操作简单通常只需要两步;
创建作业的配置文件(json格式配置reader,writer);
image.png
启动执行配置作业。
常适合离线数据,增量数据可以使用一些编码的方式实现,
缺点:仅仅针对insert数据比较有效,update数据就不适合。缺乏对增量更新的内置支持,因为DataX的灵活架构,可以通过shell脚本等方式方便实现增量同步。
参考资料:
github地址:https://github.com/alibaba/DataX
dataX3.0介绍:https://www.jianshu.com/p/65c440f9bce1
datax初体验:https://www.imooc.com/article/15640
文档:https://github.com/alibaba/DataX/blob/master/hdfswriter/doc/hdfswriter.md
Sqoop
Sqoop(发音:skup)是一款开源的工具,主要用于在Hadoop(Hive)与传统的数据库(mysql、postgresql…)间进行数据的传递,可以将一个关系型数据库(例如 : MySQL ,Oracle ,Postgres等)中的数据导进到Hadoop的HDFS中,也可以将HDFS的数据导进到关系型数据库中。
地址:http://sqoop.apache.org/
Sqoop导入:导入工具从RDBMS到HDFS导入单个表。表中的每一行被视为HDFS的记录。所有记录被存储在文本文件的文本数据或者在Avro和序列文件的二进制数据。
Sqoop导出:导出工具从HDFS导出一组文件到一个RDBMS。作为输入到Sqoop文件包含记录,这被称为在表中的行。那些被读取并解析成一组记录和分隔使用用户指定的分隔符。
Sqoop支持全量数据导入和增量数据导入(增量数据导入分两种,一是基于递增列的增量数据导入(Append方式)。二是基于时间列的增量数据导入(LastModified方式)),同时可以指定数据是否以并发形式导入。
image.pngKettle
Kettle是一款国外开源的ETL工具,纯java编写,可以在Window、Linux、Unix上运行,数据抽取高效稳定。
Kettle的Spoon有丰富的Steps可以组装开发出满足多种复杂应用场景的数据集成作业,方便实现全量、增量数据同步。缺点是通过定时运行,实时性相对较差。
NiFi
Apache NiFi 是一个易于使用、功能强大而且可靠的数据拉取、数据处理和分发系统,用于自动化管理系统间的数据流。它支持高度可配置的指示图的数据路由、转换和系统中介逻辑,支持从多种数据源动态拉取数据。
NiFi基于Web方式工作,后台在服务器上进行调度。 用户可以为数据处理定义为一个流程,然后进行处理,后台具有数据处理引擎、任务调度等组件。
几个核心概念:
Nifi 的设计理念接近于基于流的编程 Flow Based Programming。
FlowFile:表示通过系统移动的每个对象,包含数据流的基本属性
FlowFile Processor(处理器):负责实际对数据流执行工作
Connection(连接线):负责不同处理器之间的连接,是数据的有界缓冲区
Flow Controller(流量控制器):管理进程使用的线程及其分配
Process Group(过程组):进程组是一组特定的进程及其连接,允许组合其他组件创建新组件
网友评论