美文网首页
2021-02-01 98. 验证二叉搜索树

2021-02-01 98. 验证二叉搜索树

作者: 止戈学习笔记 | 来源:发表于2021-02-01 16:10 被阅读0次

题目地址

https://leetcode-cn.com/problems/validate-binary-search-tree

题目描述

给定一个二叉树,判断其是否是一个有效的二叉搜索树。

假设一个二叉搜索树具有如下特征:

节点的左子树只包含小于当前节点的数。
节点的右子树只包含大于当前节点的数。
所有左子树和右子树自身必须也是二叉搜索树。
示例 1:

输入:
    2
   / \
  1   3
输出: true
示例 2:

输入:
    5
   / \
  1   4
     / \
    3   6
输出: false
解释: 输入为: [5,1,4,null,null,3,6]。
     根节点的值为 5 ,但是其右子节点值为 4 。
/**
 * Created by zcdeng on 2021/2/1.
 */
public class VerifyBT {
    public static void main(String[] args) {
        int[] arr = {-2147483648};
        TreeNode head = TreeNode.createTreeNode(arr);
        boolean result = verifyBT(head, new ArrayList<Integer>());
        System.out.println(result);
        result = verifyBTV2(head, new long[] {Long.MIN_VALUE});
        System.out.println(result);
        result = verifyBTV3(head, Long.MIN_VALUE, Long.MAX_VALUE);
        System.out.println(result);
    }
    /**
     * 二叉搜索树的中序遍历是递增序列
     * 运行时间 1 ms
     * 内存消耗 38.4 MB
     */
    private static boolean verifyBT(TreeNode head, List<Integer> max) {
        boolean result = true;
        if (head != null) {
            result = result & verifyBT(head.getLeft(), max);
            int val = head.getValue();
            if (max.size() > 0 && max.get(0)>= val) {
                return false;
            }
            max.add(0, Math.max(max.size() > 0 ? max.get(0) : Integer.MIN_VALUE, val));
            result = result & verifyBT(head.getRight(), max);
        }
        return result;
    }

    /**
     * 改用数组存储
     * 执行用时: 0 ms
     * 内存消耗: 38 MB
     */
    private static boolean verifyBTV2(TreeNode head, long[] max) {
        boolean result = true;
        if (head != null) {
            result = result & verifyBTV2(head.getLeft(), max);
            int val = head.getValue();
            if (max[0]>= val) {
                return false;
            }
            max[0] = Math.max(max[0], val);
            result = result & verifyBTV2(head.getRight(), max);
        }
        return result;
    }

    /**
     * 每一个子树, 往左走, 最大的是根, 往右走最小的是根
     * 执行用时: 0 ms
     * 内存消耗: 37.9 MB
     */
    private static boolean verifyBTV3(TreeNode head, long min, long max) {
        if (head == null) {
            return true;
        }
        long val = head.getValue();
        if (val <= min || val >= max) {
            return false;
        }
        return verifyBTV3(head.getLeft(), min, val) && verifyBTV3(head.getRight(), val, max);
    }

拓展下二叉树相关的基本操作

  1. 创建二叉树, 一颗二叉树需要两种遍历才可以唯一的确定
    下面使用了先序遍历和中序遍历创建二叉树
    补充完整的完全二叉树层次遍历数组创建二叉树
  2. 二叉树的遍历, 先序中序后序, 递归和迭代分别编写,层次遍历
    二叉树的层次遍历和图的广度遍历相似,只不过图的广度遍历需要增加去重(可能有环)
/**
 * @Author: vividzcs
 * @Date: 2021/1/30 4:05 下午
 */
public class NodeTree {
    private int value;
    private NodeTree left;
    private NodeTree right;

    public NodeTree(int value) {
        this.value = value;
    }

    public static void main(String[] args) {
        int[] pre = {1,3,5,7,8,6,4};
        int[] mid = {3,7,5,8,1,4,6};
        Map<Integer, Integer> indexes = new HashMap<>();
        for (int i=0; i<mid.length; i++) {
            indexes.put(mid[i], i);
        }
        NodeTree head = NodeTree.createTree(indexes, pre, mid, 0, pre.length - 1, 0, mid.length - 1);

        int[] arr = {3,9,20,-1,-1,15,7};
        NodeTree head1 = NodeTree.createTree(arr);
        head1.lastOrder(head1);
        System.out.println();
        head1.iteratorLastOrder(head1);
    }
    public NodeTree mirro(NodeTree head) {
        if (head == null) {
            return null;
        }
        NodeTree tmp = head.left;
        head.setLeft(head.getRight());
        head.setRight(tmp);
        mirro(head.getLeft());
        mirro(head.getRight());
        return head;
    }
    /**
     * 先序遍历+中序遍历创建二叉树
     */
    public static NodeTree createTree(Map<Integer, Integer> indexes, int[] pre, int[] mid, int pStart, int pEnd, int mStart, int mEnd) {
        if (pStart > pEnd || mStart > mEnd) {
            return null;
        }
        NodeTree head = new NodeTree(pre[pStart]);
        int indexInMid = indexes.get(pre[pStart]);
        head.setLeft(createTree(indexes, pre, mid, pStart + 1, indexInMid - mStart + pStart, mStart, indexInMid - 1));
        head.setRight(createTree(indexes, pre, mid, indexInMid - mStart + pStart+1, pEnd, indexInMid + 1, mEnd));
        return head;
    }

    /**
     * 根据完全二叉树的数组创建二叉树
     */
    public static NodeTree createTree(int[] arr) {
        if (arr.length < 1) {
            return null;
        }
        NodeTree head = new NodeTree(arr[0]);
        List<NodeTree> queue = new ArrayList<>();
        queue.add(head);
        int index = 0;
        while (queue.size() > 0 && index < arr.length) {
            NodeTree currentNode = queue.remove(0);
            index++;
            if (index < arr.length && arr[index] != -1) {
                currentNode.setLeft(new NodeTree(arr[index]));
                queue.add(currentNode.getLeft());
            }
            index++;
            if (index < arr.length && arr[index] != -1) {
                currentNode.setRight(new NodeTree(arr[index]));
                queue.add(currentNode.getRight());
            }
        }
        return head;
    }

    /**
     * 迭代 先序遍历
     * @param head
     */
    public void preOrderIterator(NodeTree head) {
        if (head == null) {
            return;
        }
        List<NodeTree> stack = new ArrayList<>();
        NodeTree currentNode = head;
        while (currentNode != null || stack.size() > 0) {
            if (currentNode == null) {
                currentNode = stack.remove(stack.size() - 1);
            }
            if (currentNode.right != null) {
                stack.add(currentNode.right);
            }
            System.out.print(currentNode.value + " ");
            currentNode = currentNode.left;
        }
    }

    /**
     * 递归先序遍历
     * @param head
     */
    public void preOrder(NodeTree head) {
        if (head != null) {
            System.out.print(head.value + " ");
            preOrder(head.left);
            preOrder(head.right);
        }
    }

    /**
     * 迭代中序遍历
     * @param head
     */
    public void iteratorMinOrder(NodeTree head) {
        if (head == null) {
            return;
        }
        List<NodeTree> stack = new ArrayList<>();
        Set<NodeTree> set = new HashSet<>();
        stack.add(head);
        while (stack.size() > 0) {
            NodeTree currentNode = stack.get(stack.size() - 1);
            while (currentNode.getLeft() != null && !set.contains(currentNode.getLeft())) {
                stack.add(currentNode.getLeft());
                currentNode = currentNode.getLeft();
            }

            currentNode = stack.remove(stack.size() - 1);
            set.add(currentNode);
            System.out.print(currentNode.getValue() + " ");
            if (currentNode.getRight() != null) {
                stack.add(currentNode.getRight());
            }
        }
    }
    /**
     * 中序遍历
     * @param head
     */
    public void minOrder(NodeTree head) {
        if (head != null) {
            minOrder(head.left);
            System.out.print(head.value + " ");
            minOrder(head.right);
        }
    }

    public void iteratorLastOrder(NodeTree head) {
        if (head == null) {
            return;
        }
        List<NodeTree> stack = new ArrayList<>();
        Set<NodeTree> set = new HashSet<>();
        stack.add(head);

        while (stack.size() > 0) {
            NodeTree currentNode = stack.get(stack.size() - 1);
            while (currentNode.getLeft() != null && !set.contains(currentNode.getLeft())) {
                stack.add(currentNode.getLeft());
                currentNode = currentNode.getLeft();
            }
            if (currentNode.getRight() != null && !set.contains(currentNode.getRight())) {
                stack.add(currentNode.getRight());
            } else {
                NodeTree temp = stack.remove(stack.size() - 1);
                System.out.print(temp.value + " ");
                set.add(temp);
            }
        }
    }
    /**
     * 后序遍历
     * @param head
     */
    public void lastOrder(NodeTree head) {
        if (head != null) {
            lastOrder(head.getLeft());
            lastOrder(head.getRight());
            System.out.print(head.value + " ");
        }
    }
    /**
     * 层次遍历
     * @param head
     */
    public void levelIterator(NodeTree head) {
        List<NodeTree> queue = new ArrayList<>();
        queue.add(head);
        while (queue.size() > 0) {
            NodeTree currentNode = queue.remove(0);
            System.out.print(currentNode.value + " ");
            if (currentNode.getLeft() != null) {
                queue.add(currentNode.getLeft());
            }
            if (currentNode.getRight() != null) {
                queue.add(currentNode.getRight());
            }
        }


    }

    public int getValue() {
        return value;
    }

    public void setValue(int value) {
        this.value = value;
    }

    public NodeTree getLeft() {
        return left;
    }

    public void setLeft(NodeTree left) {
        this.left = left;
    }

    public NodeTree getRight() {
        return right;
    }

    public void setRight(NodeTree right) {
        this.right = right;
    }
}

相关文章

网友评论

      本文标题:2021-02-01 98. 验证二叉搜索树

      本文链接:https://www.haomeiwen.com/subject/psajtltx.html