美文网首页
Numpy 隐含的四大陷阱,千万别掉进去了!

Numpy 隐含的四大陷阱,千万别掉进去了!

作者: 宝葫芦的密 | 来源:发表于2018-11-30 23:42 被阅读0次
陷阱一:数据结构混乱

array 和 matrix 都可以用来表示多维矩阵:

看起来效果不错。假设我们要对数据进行筛选,取第 1 列的第 1 行和第 3 行数据构成一个 2 x 1 的列向量。先看对 array 的做法:

从 Out[101] 可以看到一个陷阱,a[:, 0] 过滤完应该是一个 3 x 1 的列向量,可是它变成了行向量。其实也不是真正意义上的行向量,因为行向量 shape 应该是 3 x 1,可是他的 shape 是 (3,) ,这其实已经退化为一个数组了。所以,导致最后 In [110] 出错。只有像 In [111] 那样 reshape 一下才可以。我不知道大家晕了没有,我是已经快晕了。

相比之下,matrix 可以确保运算结果全部是二维的,结果相对好一点。为什么只是相对好一点呢?呆会儿我们再来吐吐 matrix 的槽点。

看起来还不错。不过槽点就来了。Out [114] 我们预期的输入结果应该是一个 2 x 1 的列向量,可是这里变成了 1 x 2 的行向量!

为什么我会在意行向量和列向量?在矩阵运算里,行向量和列向量是不同的。比如一个 m x 3 的矩阵可以和 3 x 1 的列向量叉乘,结果是 m x 1 的列向量。而如果一个 m x 3 的矩阵和 1 x 3 的行向量叉乘是会报错的。

陷阱二:数据处理能力不足,语言效率低

我们再看个例子。假设 X 是 5 x 2 的矩阵,Y 是 5 X 1 的 bool 矩阵,我们想用 Y 来过滤 X ,即取出 Y 值为 True 的项的索引,拿这些索引去 X 里找出对应的行,再组合成一个新矩阵。

我们预期 X 过滤完是 3 x 2 列的矩阵,但不幸的是从 Out[81] 来看 numpy 这样过滤完只会保留第一列的数据,且把它转化成了行向量,即变成了 1 x 3 的行向量。不知道你有没有抓狂的感觉。如果按照 In [85] 的写法,还会报错。如果要正确地过滤不同的列,需要写成 In [86] 和 In [87] 的形式。但是即使写成 In [86] 和 In [87] 的样式,还是一样把列向量转化成了行向量。所以,要实现这个目的,得复杂到按照 In [88] 那样才能达到目的。实际上,这个还达不到目的,因为那里面写了好多硬编码的数字,要处理通用的过滤情况,还需要写个函数来实现。而这个任务在 matlab/octave 里只需要写成 X(Y==1, :) 即可完美达成目的。

陷阱三:数值运算句法混乱

在机器学习算法里,经常要做一些矩阵运算。有时候要做叉乘,有时候要做点乘。我们看一下 numpy 是如何满足这个需求的。

假设 x, y, theta 的值如下,我们要先让 x 和 y 点乘,再让结果与 theta 叉乘,最后的结果我们期望的是一个 5 x 1 的列向量。

直观地讲,我们应该会想这样做:(x 点乘 y) 叉乘 theta。但很不幸,当你输入 x * y 时妥妥地报错。那好吧,我们这样做总行了吧,x[:, 0] * y 这样两个列向量就可以点乘了吧,不幸的还是不行,因为 numpy 认为这是 matrix,所以执行的是矩阵相乘(叉乘),要做点乘,必须转为 array 。

所以,我们需要象 In [39] 那样一列列转为 array 和 y 执行点乘,然后再组合回 5 x 3 的矩阵。好不容易算出了 x 和 y 的点乘了,终于可以和 theta 叉乘了。

看起来结果还不错,但实际上这里面也是陷阱重重。

In [45] 会报错,因为在 array 里 * 运算符是点乘,而在 matrix 里 * 运算符是叉乘。如果要在 array 里算叉乘,需要用 dot 方法。看起来提供了灵活性,实际上增加了使用者的大脑负担。而我们的需求在 matlab/octave 里只需要写成 x .* y * theta ,直观优雅。

陷阱四:语法复杂,不自然

比如,我们要在一个 5 x 2 的矩阵的前面加一列全部是 1 的数据,变成一个 5 x 3 的矩阵,我们必须这样写:

有兴趣的人可以数数 In [18] 里有多少个括号,还别不服,括号写少了妥妥地报错。而这个需求在 matlab/octave 里面只需要写成 [ones(5,1) x] ,瞬间脑袋不短路了,直观优雅又回来了。

结论


有人说 python 是机器学习和数据分析的新贵,但和专门的领域语言 matlab/octave 相比,用起来确实还是比较别扭的。当然有些槽点是因为语言本身的限制,比如 python 不支持自定义操作符,导致 numpy 的一些设计不够优雅和直观,但默认把列向量转化为行向量的做法只能说是 numpy 本身的设计问题了。这或许就是 Andrew Ng 在他的 Machine Learning 课程里用 matlab/octave ,而不用 python 或其他的语言的原因吧。

相关文章

  • Numpy 隐含的四大陷阱,千万别掉进去了!

    array 和 matrix 都可以用来表示多维矩阵: 看起来效果不错。假设我们要对数据进行筛选,取第 1 列的第...

  • 陷阱是谁掉进去了

    有这么一个场景。你眼睁睁的看着你最关心的那个人掉到陷阱里了,本就着急的你自然是心急如焚,想拉他一把,可是对方不领情...

  • 国家外汇局出手!中国富豪境外买房被罚2497万

    汇信App讯 俗话说:你不理财,财不理你。但是理财千万别投机取巧,因为特别容易掉进陷阱,或者触及法律底线。 5月2...

  • numpy 的陷阱

    陷阱一:数据结构混乱 array 和 matrix 都可以用来表示多维矩阵 看起来效果不错。假设我们要对数据进行筛...

  • 人生八大陷阱(鼎然)

    人生八大陷阱(鼎然) 一个人之所以能掉进陷阱,并不是陷阱有多么厉害,而是掉进陷阱的人有所企图。企图就是诱饵且早已经...

  • 消费陷阱:你掉进去了吗?

    超前消费好还是坏? 偶尔看到一条新闻xxx大学女大学生使用多个分期付款软件、网贷软件购买多件奢饰品,其中包括某水果...

  • 幸福的陷阱,你掉进去了么?

    人人都想要幸福,但是真相是,幸福,并不是人类的常态。痛苦是生命不可或缺的部分,根本无法逃脱。why?这要从...

  • 觉察日记2020.0818

    阅读陷阱|4点· 是之前读书时,都曾掉进去了, 读完就懂,读完就忘;逐字逐句;何时读完; ️———————————...

  • 掉进陷阱的狐狸

    我掉进了一个猎人的陷阱。 好吧,这句话有些突兀,我应该讲述的再详细一些:我是一只聪明的狐狸,而我在早上出来寻找食物...

  • 几点感悟

    一:陷阱 自然界有陷阱,那是猎人设下的圈套。人生有误区,那是上帝对愚蠢者的惩罚。狐狸掉进陷阱...

网友评论

      本文标题:Numpy 隐含的四大陷阱,千万别掉进去了!

      本文链接:https://www.haomeiwen.com/subject/ptzkcqtx.html