Tensorflow 构建简单神经网络
import tensorflow as tf
import numpy as np
def add_layer(inputs, in_size, out_size, activation_function=None):
Weights = tf.Variable(tf.random_normal([in_size,out_size])) # Weight matrix
biases = tf.Variable(tf.zeros([1, out_size])+0.1) #Biases is not suggested to be zero, so set +0.1 here
Wx_plus_b = tf.matmul(inputs,Weights)+biases
if activation_function is None:
outputs = Wx_plus_b
else:
outputs = activation_function(Wx_plus_b)
return outputs
# Input Observed Data
x_data = np.linspace(-1,1,300)[:,np.newaxis]
noise = np.random.normal(0,0.05,x_data.shape)
y_data = np.square(x_data)-0.5+noise
# Store Observed Data with placeholder
xs = tf.placeholder(tf.float32, [None,1])
ys = tf.placeholder(tf.float32, [None,1])
# create layer
l1 = add_layer(xs, 1, 10, activation_function=tf.nn.relu)
prediction = add_layer(l1, 10, 1, activation_function = None)
# define loss function,
loss = tf.reduce_mean(tf.square(ys-prediction))
# use Gradient Descent Optimizer to minimize loss
train_step = tf.train.GradientDescentOptimizer(0.1).minimize(loss)
# initiation
init = tf.global_variables_initializer()
sess = tf.Session()
sess.run(init)
for i in range(1000):
sess.run(train_step,feed_dict={xs:x_data, ys:y_data}) # learn 1000 times
if i%50:
print(sess.run(loss, feed_dict={xs:x_data, ys:y_data})) # print loss
网友评论