美文网首页
anaconda2 + caffe +gpu centos7

anaconda2 + caffe +gpu centos7

作者: 蒜泥狠 | 来源:发表于2018-05-25 13:04 被阅读0次

    1:anaconda 包管理工具下载地址,找到想要下载的对应版本 copy 下载路径

    2.linux 下下载安装,点击下一步下一步,会提示你是不是把路径放在环境变量里,回复yes放进去,回车

     wget https://repo.anaconda.com/archive/Anaconda2-5.1.0-Linux-x86_64.sh

     bash   Anaconda2-5.1.0-Linux-x86_64.sh

    安装过程中会需要不断回车来阅读并同意license。安装路径默认为用户目录(可以自己指定),最后需要确认将路径加入用户的.bashrc中。

    最后,立即使路径生效,需要在用户目录下执行:

    source .basic

    3.测试是否安装,成功进入python界面看出来python版本则成功。

    4.anaconda 包的使用

    conda  info  --package 查看包的版本

    conda  list  查看已有的包

    conda  install  --package 安装包

    conda  install  package=1.2.0 安装对应的版本包

    conda   uninstall  --package 卸载包


    python 导入 caffe

    1.修改caffe 路径下的Makefile.config 包,注意标黑字体

    ## Refer to http://caffe.berkeleyvision.org/installation.html

    # Contributions simplifying and improving our build system are welcome!

    # cuDNN acceleration switch (uncomment to build with cuDNN).

    USE_CUDNN := 1

    # CPU-only switch (uncomment to build without GPU support).

    # CPU_ONLY := 1

    # uncomment to disable IO dependencies and corresponding data layers

    USE_OPENCV := 1

    # USE_LEVELDB := 0

    # USE_LMDB := 0

    # uncomment to allow MDB_NOLOCK when reading LMDB files (only if necessary)

    # You should not set this flag if you will be reading LMDBs with any

    # possibility of simultaneous read and write

    # ALLOW_LMDB_NOLOCK := 1

    # Uncomment if you're using OpenCV 3

    # OPENCV_VERSION := 3

    # To customize your choice of compiler, uncomment and set the following.

    # N.B. the default for Linux is g++ and the default for OSX is clang++

    # CUSTOM_CXX := g++

    # CUDA directory contains bin/ and lib/ directories that we need.

    CUDA_DIR := /usr/local/cuda

    # On Ubuntu 14.04, if cuda tools are installed via

    # "sudo apt-get install nvidia-cuda-toolkit" then use this instead:

    # CUDA_DIR := /usr

    # CUDA architecture setting: going with all of them.

    # For CUDA < 6.0, comment the *_50 through *_61 lines for compatibility.

    # For CUDA < 8.0, comment the *_60 and *_61 lines for compatibility.

    # For CUDA >= 9.0, comment the *_20 and *_21 lines for compatibility.

    CUDA_ARCH :=

            #-gencode arch=compute_20,code=sm_20 \

            #-gencode arch=compute_20,code=sm_21 \

            -gencode arch=compute_30,code=sm_30 \

            -gencode arch=compute_35,code=sm_35 \

            -gencode arch=compute_50,code=sm_50 \

            -gencode arch=compute_52,code=sm_52 \

            -gencode arch=compute_60,code=sm_60 \

            -gencode arch=compute_61,code=sm_61 \

            -gencode arch=compute_61,code=compute_61

    # BLAS choice:

    # atlas for ATLAS (default)

    # mkl for MKL

    # open for OpenBlas

    BLAS := atlas

    # Custom (MKL/ATLAS/OpenBLAS) include and lib directories.

    # Leave commented to accept the defaults for your choice of BLAS

    # (which should work)!

    BLAS_INCLUDE := /usr/include

    BLAS_LIB := /usr/lib64

    # Homebrew puts openblas in a directory that is not on the standard search path

    # BLAS_INCLUDE := $(shell brew --prefix openblas)/include

    # BLAS_LIB := $(shell brew --prefix openblas)/lib

    # This is required only if you will compile the matlab interface.

    # MATLAB directory should contain the mex binary in /bin.

    # MATLAB_DIR := /usr/local

    # MATLAB_DIR := /Applications/MATLAB_R2012b.app

    # NOTE: this is required only if you will compile the python interface.

    # We need to be able to find Python.h and numpy/arrayobject.h.

    #PYTHON_INCLUDE := /usr/include/python2.7 \

    /usr/lib/python2.7/dist-packages/numpy/core/include

    #PYTHON_INCLUDE := /usr/include/python2.7 \

                    /usr/lib64/python2.7/site-packages/numpy/core/include

    #PYTHON_INCLUDE := /usr/local/python-3.6.1 \

                    /usr/local/python-3.6.1/site-packages/numpy/core/include

    # Anaconda Python distribution is quite popular. Include path:

    # Verify anaconda location, sometimes it's in root.

    ANACONDA_HOME := $(HOME)/anaconda2

    PYTHON_INCLUDE := $(ANACONDA_HOME)/include \

    $(ANACONDA_HOME)/include/python2.7 \

    $(ANACONDA_HOME)/lib/python2.7/site-packages/numpy/core/include

    # Uncomment to use Python 3 (default is Python 2)

    # PYTHON_LIBRARIES := boost_python3 python3.5m

    # PYTHON_INCLUDE := /usr/include/python3.5m \

    #                /usr/lib/python3.5/dist-packages/numpy/core/include

    # We need to be able to find libpythonX.X.so or .dylib.

    #PYTHON_LIB := /usr/lib

    PYTHON_LIB := $(ANACONDA_HOME)/lib

    # Homebrew installs numpy in a non standard path (keg only)

    # PYTHON_INCLUDE += $(dir $(shell python -c 'import numpy.core; print(numpy.core.__file__)'))/include

    # PYTHON_LIB += $(shell brew --prefix numpy)/lib

    # Uncomment to support layers written in Python (will link against Python libs)

    WITH_PYTHON_LAYER := 1

    # Whatever else you find you need goes here.

    INCLUDE_DIRS := $(PYTHON_INCLUDE) /usr/local/include

    LIBRARY_DIRS := $(PYTHON_LIB) /usr/local/lib /usr/lib

    # If Homebrew is installed at a non standard location (for example your home directory) and you use it for general dependencies

    # INCLUDE_DIRS += $(shell brew --prefix)/include

    # LIBRARY_DIRS += $(shell brew --prefix)/lib

    # NCCL acceleration switch (uncomment to build with NCCL)

    # https://github.com/NVIDIA/nccl (last tested version: v1.2.3-1+cuda8.0)

    USE_NCCL := 1

    # Uncomment to use `pkg-config` to specify OpenCV library paths.

    # (Usually not necessary -- OpenCV libraries are normally installed in one of the above $LIBRARY_DIRS.)

    # USE_PKG_CONFIG := 1

    # N.B. both build and distribute dirs are cleared on `make clean`

    BUILD_DIR := build

    DISTRIBUTE_DIR := distribute

    # Uncomment for debugging. Does not work on OSX due to https://github.com/BVLC/caffe/issues/171

    # DEBUG := 1

    # The ID of the GPU that 'make runtest' will use to run unit tests.

    TEST_GPUID := 0

    # enable pretty build (comment to see full commands)

    Q ?= @

    2.配置好环境开始导入发现导入缺少包

    make clean

    make all -j8 

    make pycaffe

    pycaffe 报错

    以python 2.7为例,anaconda2 中缺少atlas,openblas ,opencv  

    解决办法 

    conda install atlas

    conda install opencv

    conda instala openblas=2.6.1

    注意:

    python 2.7  不支持 libprotobuf ,libopenblas  如果报错请删除。

    相关文章

      网友评论

          本文标题:anaconda2 + caffe +gpu centos7

          本文链接:https://www.haomeiwen.com/subject/puuyjftx.html