美文网首页
tensorflow初始化权重和tf.nn.relu

tensorflow初始化权重和tf.nn.relu

作者: 王金松 | 来源:发表于2019-01-18 13:23 被阅读0次

    tf.truncated_normal 截断正态分布 tensorflow中默认的初始化方法
    tf.random_normal 标准正态分布
    tf.random_uniform 均匀分布
    xavier_initializer() fully_connected默认的初始化方法

    参考:http://www.tensorfly.cn/tfdoc/tutorials/mnist_pros.html

    kernel1 = tf.nn.conv2d(image_holder, filter=weight1, strides=[1, 1, 1, 1], padding='SAME')
    bias1 = tf.Variable(tf.constant(0.0, shape=[64]))
    #下面三句话意思一样
    conv1 = tf.nn.relu(tf.nn.bias_add(kernel1, bias1))
    conv1 = tf.nn.relu(kernel1 + bias1)
    conv1 = tf.nn.relu(tf.add(kernel1, bias1))
    
    
    #全连接层
    W_fc1 = weight_variable([7 * 7 * 64, 1024])
    b_fc1 = bias_variable([1024])
    
    h_pool2_flat = tf.reshape(h_pool2, [-1, 7*7*64])
    h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)
    
    #dropout层
    keep_prob = tf.placeholder("float")
    h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)
    
    #输出层
    W_fc2 = weight_variable([1024, 10])
    b_fc2 = bias_variable([10])
    
    y_conv=tf.nn.softmax(tf.matmul(h_fc1_drop, W_fc2) + b_fc2)
    

    例子

    # -*- coding: utf-8 -*-
    """
    Created on Thu May  3 12:29:16 2018
    
    @author: zy
    """
    
    '''
    优化卷积核 提高运算速度
    '''
    
    '''
    建立一个带有全局平均池化层的卷积神经网络  并对CIFAR-10数据集进行分类
    1.使用3个卷积层的同卷积操作,滤波器大小为5x5,每个卷积层后面都会跟一个步长为2x2的池化层,滤波器大小为2x2
    2.对输出的10个feature map进行全局平均池化,得到10个特征
    3.对得到的10个特征进行softmax计算,得到分类
    '''
    
    import cifar10_input
    import tensorflow as tf
    import numpy as np
    
    # 2. 通过tf.get_variable函数来获取变量
    def get_weight_variable(shape, regularizer):
        weights = tf.get_variable("weights", shape, initializer=tf.truncated_normal_initializer(stddev=0.1))
        if regularizer != None:
            tf.add_to_collection('losses', regularizer(weights))
        return weights
    
    def weight_variable(shape):
        '''
        初始化权重
        
        args:
            shape:权重shape
        '''
        initial = tf.truncated_normal(shape=shape,mean=0.0,stddev=0.1)
        return tf.Variable(initial)
    
    def bias_variable(shape):
        '''
        初始化偏置
        
        args:
            shape:偏置shape
        '''
        initial =tf.constant(0.1,shape=shape)
        return tf.Variable(initial)
    
    
    def conv2d(x,W):
        '''
        卷积运算 ,使用SAME填充方式   卷积层后
             out_height = in_hight / strides_height(向上取整)
             out_width = in_width / strides_width(向上取整)
        
        args:
            x:输入图像 形状为[batch,in_height,in_width,in_channels] 
            W:权重 形状为[filter_height,filter_width,in_channels,out_channels]        
        '''
        return tf.nn.conv2d(x,W,strides=[1,1,1,1],padding='SAME')
    
    
    def max_pool_2x2(x):
        '''
        最大池化层,滤波器大小为2x2,'SAME'填充方式  池化层后
             out_height = in_hight / strides_height(向上取整)
             out_width = in_width / strides_width(向上取整)
        
        args:
            x:输入图像 形状为[batch,in_height,in_width,in_channels] 
        '''
        return tf.nn.max_pool(x,ksize=[1,2,2,1],strides=[1,2,2,1],padding='SAME')
        
    
    def avg_pool_6x6(x):
        '''
        全局平均池化层,使用一个与原有输入同样尺寸的filter进行池化,'SAME'填充方式  池化层后
             out_height = in_hight / strides_height(向上取整)
             out_width = in_width / strides_width(向上取整)
        
        args;
            x:输入图像 形状为[batch,in_height,in_width,in_channels] 
        '''
        return tf.nn.avg_pool(x,ksize=[1,6,6,1],strides=[1,6,6,1],padding='SAME')
    
    def print_op_shape(t):
        '''
        输出一个操作op节点的形状
        
        args:
            t:必须是一个tensor类型
            t.get_shape()返回一个元组  .as_list()转换为list
        '''
        print(t.op.name,'',t.get_shape().as_list())
    
    '''
    一 引入数据集
    '''
    batch_size = 128
    learning_rate = 1e-4
    training_step = 15000
    display_step = 200
    #数据集目录
    data_dir = './cifar10_data/cifar-10-batches-bin'
    print('begin')
    #获取训练集数据
    images_train,labels_train = cifar10_input.inputs(eval_data=False,data_dir = data_dir,batch_size=batch_size)
    print('begin data')
    
    
    '''
    二 定义网络结构
    '''
    #定义占位符
    input_x = tf.placeholder(dtype=tf.float32,shape=[None,24,24,3])   #图像大小24x24x
    input_y = tf.placeholder(dtype=tf.float32,shape=[None,10])        #0-9类别 
    
    x_image = tf.reshape(input_x,[batch_size,24,24,3])
    
    #1.卷积层 ->池化层
    W_conv1 = weight_variable([5,5,3,64])
    b_conv1 = bias_variable([64])
    
    
    h_conv1 = tf.nn.relu(conv2d(x_image,W_conv1) + b_conv1)    #输出为[-1,24,24,64]
    print_op_shape(h_conv1)
    h_pool1 = max_pool_2x2(h_conv1)                            #输出为[-1,12,12,64]
    print_op_shape(h_pool1)
    
    
    #2.卷积层 ->池化层   卷积核做优化
    W_conv21 = weight_variable([5,1,64,64])
    b_conv21 = bias_variable([64])
    
    
    h_conv21 = tf.nn.relu(conv2d(h_pool1,W_conv21) + b_conv21)    #输出为[-1,12,12,64]
    print_op_shape(h_conv21)
    
    W_conv2 = weight_variable([1,5,64,64])
    b_conv2 = bias_variable([64])
    
    
    h_conv2 = tf.nn.relu(conv2d(h_conv21,W_conv2) + b_conv2)     #输出为[-1,12,12,64]
    print_op_shape(h_conv2)
    
    h_pool2 = max_pool_2x2(h_conv2)                              #输出为[-1,6,6,64]
    print_op_shape(h_pool2)
    
    
    
    #3.卷积层 ->全局平均池化层
    W_conv3 = weight_variable([5,5,64,10])
    b_conv3 = bias_variable([10])
    
    h_conv3 = tf.nn.relu(conv2d(h_pool2,W_conv3) + b_conv3)   #输出为[-1,6,6,10]
    print_op_shape(h_conv3)
    
    nt_hpool3 = avg_pool_6x6(h_conv3)                         #输出为[-1,1,1,10]
    print_op_shape(nt_hpool3)
    nt_hpool3_flat = tf.reshape(nt_hpool3,[-1,10])            
    
    y_conv = tf.nn.softmax(nt_hpool3_flat)
    
    '''
    三 定义求解器
    '''
    
    #softmax交叉熵代价函数
    cost = tf.reduce_mean(-tf.reduce_sum(input_y * tf.log(y_conv),axis=1))
    
    #求解器
    train = tf.train.AdamOptimizer(learning_rate).minimize(cost)
    
    #返回一个准确度的数据
    correct_prediction = tf.equal(tf.arg_max(y_conv,1),tf.arg_max(input_y,1))
    #准确率
    accuracy = tf.reduce_mean(tf.cast(correct_prediction,dtype=tf.float32))
    
    '''
    四 开始训练
    '''
    sess = tf.Session();
    sess.run(tf.global_variables_initializer())
    # 启动计算图中所有的队列线程 调用tf.train.start_queue_runners来将文件名填充到队列,否则read操作会被阻塞到文件名队列中有值为止。
    tf.train.start_queue_runners(sess=sess)
    
    for step in range(training_step):
        #获取batch_size大小数据集
        image_batch,label_batch = sess.run([images_train,labels_train])
        
        #one hot编码
        label_b = np.eye(10,dtype=np.float32)[label_batch]
        
        #开始训练
        train.run(feed_dict={input_x:image_batch,input_y:label_b},session=sess)
        
        if step % display_step == 0:
            train_accuracy = accuracy.eval(feed_dict={input_x:image_batch,input_y:label_b},session=sess)
            print('Step {0} tranining accuracy {1}'.format(step,train_accuracy))
    

    相关文章

      网友评论

          本文标题:tensorflow初始化权重和tf.nn.relu

          本文链接:https://www.haomeiwen.com/subject/pvhndqtx.html