美文网首页区块链大学程序那些事Java
数据分析实际案例之:pandas在餐厅评分数据中的使用

数据分析实际案例之:pandas在餐厅评分数据中的使用

作者: flydean程序那些事 | 来源:发表于2022-02-25 13:50 被阅读0次

    简介

    为了更好的熟练掌握pandas在实际数据分析中的应用,今天我们再介绍一下怎么使用pandas做美国餐厅评分数据的分析。

    餐厅评分数据简介

    数据的来源是UCI ML Repository,包含了一千多条数据,有5个属性,分别是:

    userID: 用户ID

    placeID:餐厅ID

    rating:总体评分

    food_rating:食物评分

    service_rating:服务评分

    我们使用pandas来读取数据:

    import numpy as np
    
    path = '../data/restaurant_rating_final.csv'
    df = pd.read_csv(path)
    df
    
    userID placeID rating food_rating service_rating
    0 U1077 135085 2 2 2
    1 U1077 135038 2 2 1
    2 U1077 132825 2 2 2
    3 U1077 135060 1 2 2
    4 U1068 135104 1 1 2
    ... ... ... ... ... ...
    1156 U1043 132630 1 1 1
    1157 U1011 132715 1 1 0
    1158 U1068 132733 1 1 0
    1159 U1068 132594 1 1 1
    1160 U1068 132660 0 0 0

    1161 rows × 5 columns

    分析评分数据

    如果我们关注的是不同餐厅的总评分和食物评分,我们可以先看下这些餐厅评分的平均数,这里我们使用pivot_table方法:

    mean_ratings = df.pivot_table(values=['rating','food_rating'], index='placeID',
                                     aggfunc='mean')
    mean_ratings[:5]
    
    food_rating rating
    placeID
    132560 1.00 0.50
    132561 1.00 0.75
    132564 1.25 1.25
    132572 1.00 1.00
    132583 1.00 1.00

    然后再看一下各个placeID,投票人数的统计:

    ratings_by_place = df.groupby('placeID').size()
    ratings_by_place[:10]
    
    placeID
    132560     4
    132561     4
    132564     4
    132572    15
    132583     4
    132584     6
    132594     5
    132608     6
    132609     5
    132613     6
    dtype: int64
    

    如果投票人数太少,那么这些数据其实是不客观的,我们来挑选一下投票人数超过4个的餐厅:

    active_place = ratings_by_place.index[ratings_by_place >= 4]
    active_place
    
    Int64Index([132560, 132561, 132564, 132572, 132583, 132584, 132594, 132608,
                132609, 132613,
                ...
                135080, 135081, 135082, 135085, 135086, 135088, 135104, 135106,
                135108, 135109],
               dtype='int64', name='placeID', length=124)
    

    选择这些餐厅的平均评分数据:

    mean_ratings = mean_ratings.loc[active_place]
    mean_ratings
    
    food_rating rating
    placeID
    132560 1.000000 0.500000
    132561 1.000000 0.750000
    132564 1.250000 1.250000
    132572 1.000000 1.000000
    132583 1.000000 1.000000
    ... ... ...
    135088 1.166667 1.000000
    135104 1.428571 0.857143
    135106 1.200000 1.200000
    135108 1.181818 1.181818
    135109 1.250000 1.000000

    124 rows × 2 columns

    对rating进行排序,选择评分最高的10个:

    top_ratings = mean_ratings.sort_values(by='rating', ascending=False)
    top_ratings[:10]
    
    food_rating rating
    placeID
    132955 1.800000 2.000000
    135034 2.000000 2.000000
    134986 2.000000 2.000000
    132922 1.500000 1.833333
    132755 2.000000 1.800000
    135074 1.750000 1.750000
    135013 2.000000 1.750000
    134976 1.750000 1.750000
    135055 1.714286 1.714286
    135075 1.692308 1.692308

    我们还可以计算平均总评分和平均食物评分的差值,并以一栏diff进行保存:

    mean_ratings['diff'] = mean_ratings['rating'] - mean_ratings['food_rating']
    
    sorted_by_diff = mean_ratings.sort_values(by='diff')
    sorted_by_diff[:10]
    
    food_rating rating diff
    placeID
    132667 2.000000 1.250000 -0.750000
    132594 1.200000 0.600000 -0.600000
    132858 1.400000 0.800000 -0.600000
    135104 1.428571 0.857143 -0.571429
    132560 1.000000 0.500000 -0.500000
    135027 1.375000 0.875000 -0.500000
    132740 1.250000 0.750000 -0.500000
    134992 1.500000 1.000000 -0.500000
    132706 1.250000 0.750000 -0.500000
    132870 1.000000 0.600000 -0.400000

    将数据进行反转,选择差距最大的前10:

    sorted_by_diff[::-1][:10]
    
    food_rating rating diff
    placeID
    134987 0.500000 1.000000 0.500000
    132937 1.000000 1.500000 0.500000
    135066 1.000000 1.500000 0.500000
    132851 1.000000 1.428571 0.428571
    135049 0.600000 1.000000 0.400000
    132922 1.500000 1.833333 0.333333
    135030 1.333333 1.583333 0.250000
    135063 1.000000 1.250000 0.250000
    132626 1.000000 1.250000 0.250000
    135000 1.000000 1.250000 0.250000

    计算rating的标准差,并选择最大的前10个:

    # Standard deviation of rating grouped by placeID
    rating_std_by_place = df.groupby('placeID')['rating'].std()
    # Filter down to active_titles
    rating_std_by_place = rating_std_by_place.loc[active_place]
    # Order Series by value in descending order
    rating_std_by_place.sort_values(ascending=False)[:10]
    
    placeID
    134987    1.154701
    135049    1.000000
    134983    1.000000
    135053    0.991031
    135027    0.991031
    132847    0.983192
    132767    0.983192
    132884    0.983192
    135082    0.971825
    132706    0.957427
    Name: rating, dtype: float64
    

    本文已收录于 http://www.flydean.com/02-pandas-restaurant/

    最通俗的解读,最深刻的干货,最简洁的教程,众多你不知道的小技巧等你来发现!

    欢迎关注我的公众号:「程序那些事」,懂技术,更懂你!

    相关文章

      网友评论

        本文标题:数据分析实际案例之:pandas在餐厅评分数据中的使用

        本文链接:https://www.haomeiwen.com/subject/pvmxrrtx.html