Higher是FAIR开源的一个元学习框架,主要针对gradient-based meta-learning。在gradient-based meta-learning算法中,经常涉及两层优化(Bi-level Optimization/Nested Optimization),以gradient-based hyper-params optimization为例
- 第一层/底层 Inner Loop是training,在给定超参的情况下,优化模型参数
- 第二层/顶层 Outer Loop是meta-training, 优化超参
在每一步模型更新时,都要进行上述两层优化子步骤。读者可能觉得这两层优化看起来平平无奇,与普通的模型训练没什么区别。确实如此,但如何级联这两层优化决定了最终算法的效果。Inner Loop需要“准备”些东西以供Outer Loop使用。Higher库的相关论文总结了此类Inner Loop- Outer Loop级联的算法。
图1 Higher库的算法框架如图1所示,输入为模型参数,元参数,为meta-params更新次数,J为inner loop展开的步数(朝前看的步数,number of steps looking ahead)。如果,那么
2-6行描述虚拟更新
第2行:得到此时的超参,
第3行: 复制得到虚拟模型, 复制得到虚拟优化器
第4行: inner loop
第5行: 计算虚拟梯度,得到梯度,保留梯度图状态(不清空梯度zero_grad)。
第6行: 虚拟更新,
第8行: 初始化
我们来看下它的用法吧。
model = MyModel()
opt = torch.optim.Adam(model.parameters())
# When you want to branch from the current state of your model and unroll
# optimization, follow this example. This context manager gets a snapshot of the
# current version of the model and optimizer at the point where you want to
# start unrolling and create a functional version `fmodel` which executes the
# forward pass of `model` with implicit fast weights which can be read by doing
# `fmodel.parameters()`, and a differentiable optimizer `diffopt` which ensures
# that at each step, gradient of `fmodel.parameters()` with regard to initial
# fast weights `fmodel.parameters(time=0)` (or any other part of the unrolled
# model history) is defined.
with higher.innerloop_ctx(model, opt) as (fmodel, diffopt):
for xs, ys in data:
logits = fmodel(xs) # modified `params` can also be passed as a kwarg
loss = loss_function(logits, ys) # no need to call loss.backwards()
diffopt.step(loss) # note that `step` must take `loss` as an argument!
# The line above gets P[t+1] from P[t] and loss[t]. `step` also returns
# these new parameters, as an alternative to getting them from
# `fmodel.fast_params` or `fmodel.parameters()` after calling
# `diffopt.step`.
# At this point, or at any point in the iteration, you can take the
# gradient of `fmodel.parameters()` (or equivalently
# `fmodel.fast_params`) w.r.t. `fmodel.parameters(time=0)` (equivalently
# `fmodel.init_fast_params`). i.e. `fast_params` will always have
# `grad_fn` as an attribute, and be part of the gradient tape.
# At the end of your inner loop you can obtain these e.g. ...
grad_of_grads = torch.autograd.grad(
meta_loss_fn(fmodel.parameters()), fmodel.parameters(time=0))
网友评论