MSE

作者: 鹰了个鹰 | 来源:发表于2019-06-16 01:29 被阅读0次

    简单来说,训练模型表示通过有标签样本来学习(确定)所有权重和偏差的理想值。在监督式学习中,机器学习算法通过以下方式构建模型:检查多个样本并尝试找出可最大限度地减少损失的模型;这一过程称为经验风险最小化。

    损失是对糟糕预测的惩罚。也就是说,损失是一个数值,表示对于单个样本而言模型预测的准确程度。如果模型的预测完全准确,则损失为零,否则损失会较大。训练模型的目标是从所有样本中找到一组平均损失“较小”的权重和偏差。例如,图 3 左侧显示的是损失较大的模型,右侧显示的是损失较小的模型。关于此图,请注意以下几点:

    红色箭头表示损失。
    蓝线表示预测。


    image.png

    请注意,左侧曲线图中的红色箭头比右侧曲线图中的对应红色箭头长得多。显然,相较于左侧曲线图中的蓝线,右侧曲线图中的蓝线代表的是预测效果更好的模型。

    您可能想知道自己能否创建一个数学函数(损失函数),以有意义的方式汇总各个损失。

    平方损失:一种常见的损失函数
    接下来我们要看的线性回归模型使用的是一种称为平方损失(又称为 L2 损失)的损失函数。单个样本的平方损失如下:

    = the square of the difference between the label and the prediction
      = (observation - prediction(x))^2
      = (y - y')^2
    

    均方误差 (MSE) 指的是每个样本的平均平方损失。要计算 MSE,请求出各个样本的所有平方损失之和,然后除以样本数量:
    MSE = \frac{1}{N} \sum_{(x,y)\in D} (y - prediction(x))^2
    其中:

    • (x,y)指的是样本
      • x指的是模型进行预测时使用的特征集(例如,温度、年龄和交配成功率)
      • prediction(x) 指的是权重和偏差与特征集x结合的函数。
      • D指的是包含多个有标签样本 (即(x,y))的数据集
      • N指的是D中样本数量

    虽然 MSE 常用于机器学习,但它既不是唯一实用的损失函数,也不是适用于所有情形的最佳损失函数。
    MSE对噪声敏感,具体请看下图分析。


    image.png

    相关文章

      网友评论

          本文标题:MSE

          本文链接:https://www.haomeiwen.com/subject/pzcwfctx.html