2020-07-11【树】

作者: 桢桢claire | 来源:发表于2020-07-11 18:02 被阅读0次
    等待那一束光

    今日鸡汤:

    大脑的一切疲劳和压力来自于过去和未来:对已经发生的事情心有不甘,对将要发生的事情充满不安。

    愿你内心平和,踏踏实实活在当下,不去悔恨过去,不去忧心未来。

    今天一起来看树啦,多刷题,多刷题,有助于预防老年痴呆。

    树的基础

    1. 树的最大深度

    最大深度一定是到叶子节点了才能判断是不是最深,为了记录层数,可以在遍历树的时候定义新的数据结构,另外存下来当前节点的层信息,这样访问叶子节点时,只要取出来判断一下就可以了。

        class NodeLevel{
            TreeNode node;
            int level;
             
            NodeLevel(TreeNode node,int level){
                this.node = node;
                this.level = level;
            }
        };
        /**
         *
         * @param root TreeNode类
         * @return int整型
         */
        public int maxDepth (TreeNode root) {
            // write code here
            if(root == null)    return 0;
            return maxTreeDepth(root);
        }
         
        public int maxTreeDepth(TreeNode root){
            int maxDepthVal = 0;
            Stack<NodeLevel> parentStack = new Stack<NodeLevel>();
            Stack<NodeLevel> childrenStack = new Stack<NodeLevel>();
             
            // Add root to childrend stack
            childrenStack.push(new NodeLevel(root, 1));
            while(childrenStack.size() > 0){
                // Get current top node.
                NodeLevel topNode = childrenStack.pop();
                int currentLevel = topNode.level;
                if(topNode.node.right == null && topNode.node.left == null){
                    if(currentLevel > maxDepthVal)    maxDepthVal = currentLevel;
                } else{
                    // Add child nodes.
                    if(topNode.node.left != null){
                        childrenStack.add(new NodeLevel(topNode.node.left, currentLevel + 1));
                    } 
                    if(topNode.node.right != null){
                        childrenStack.add(new NodeLevel(topNode.node.right, currentLevel + 1));
                    }
                }
                parentStack.push(topNode);
            }
            return maxDepthVal;
        }
    

    树的遍历

    先来看树的遍历。主要分为前序(先序)、中序和后序,遍历方法也很直接,递归和非递归,递归比较简单,主要看一下非递归方式,涉及到不同的数据结构。

    1. 前序遍历

    前序遍历是按照<根、左、右>的方式来遍历,特点是根先出,所以可以用一个栈+一个队列的数据结构。栈用来存当前节点,队列用来按顺序存放遍历结果。注意压栈是要先右再左,这样出栈时才是先左后右。

    public ArrayList<Integer> preorderTraversal (TreeNode root) {
            Stack<TreeNode> stack = new Stack<TreeNode>();
            ArrayList<Integer> preOrderList = new ArrayList<Integer>();
            
            if(root == null)    return preOrderList;
            // Add root to stack
            stack.push(root);
            
            while(stack.size() != 0){
                // Get top node and put it into list.
                TreeNode topNode = stack.pop();
                preOrderList.add(topNode.val);
                
                // Push right node and left node to stack.
                if(topNode.right != null){
                    stack.push(topNode.right);
                }
                if(topNode.left != null){
                    stack.push(topNode.left);
                }
            }
            return preOrderList;
        }
    

    2. 中序遍历

    中序遍历是按照<左、中、右>的方式遍历,特点是根在中间,可以根据根节点位置直接区分左右子树的元素。因此,可以用一个栈,直接DFS,一直找左节点,为空时出栈,再加入右节点。

    public ArrayList<Integer> inorderTraversal (TreeNode root) {
            ArrayList<Integer> traversalList = new ArrayList<Integer>();
             
            Stack<TreeNode> stack = new Stack<TreeNode>();
             
            TreeNode currentNode = root;
            // When all nodes are processed,  stack will be empty, stop the loop.
            while(currentNode != null || !stack.isEmpty()){
                if(currentNode != null){
                    // Push left node to the stack
                    stack.push(currentNode);
                    currentNode = currentNode.left;
                } else{
                    // Pop current node in the stack
                    TreeNode popedNode = stack.pop();
                    // Add value to list
                    traversalList.add(popedNode.val);
                    // Push right node
                    currentNode = popedNode.right;
                }
            }
            return traversalList;
        }
    

    3. 后序遍历

    后序遍历是按照<左、右、中>的方式遍历,特点是根节点在最后,因此用两个栈,一个存放当前节点,一个存放当前节点的左右孩子。注意压栈时先左后右。

    public ArrayList<Integer> postorderTraversal (TreeNode root) {
            // write code here
            ArrayList<Integer> postorderList = new ArrayList<Integer>();
            if(root == null)    return postorderList;
             
            Stack<TreeNode> parentStack = new Stack<TreeNode>();
            Stack<TreeNode> childrenStack = new Stack<TreeNode>();
             
            // Put root into children stack.
            childrenStack.push(root);
             
            while(childrenStack.size() != 0){
                // Pop top node and push it into parent stack.
                TreeNode topNode = childrenStack.pop();
                parentStack.push(topNode);
                 
                // Push left and right node into children stack.
                if(topNode.left != null){
                    childrenStack.push(topNode.left);
                }
                if(topNode.right != null){
                    childrenStack.push(topNode.right);
                }
            }
             
            // Pop element in parent stack and save it into list.
            while(parentStack.size() != 0){
                postorderList.add(parentStack.pop().val);
            }
            return postorderList;
        }
    

    4. 层次遍历(分层存储)

    层次遍历是一层一层的从左往右遍历,遇到空节点直接跳过,所以可以用两个队列,一个队列放该层的节点,一个队列放上个队列所有节点的孩子,再倒手。

        public ArrayList<ArrayList<Integer>> levelOrder (TreeNode root) {
            // write code here
            ArrayList<ArrayList<Integer>> orderTraverseList = new ArrayList<ArrayList<Integer>>();
             
            if(root == null)    return orderTraverseList;
             
            ArrayList<TreeNode> parentList = new ArrayList<TreeNode>();
     
            parentList.add(root);
            
            while(parentList != null && parentList.size() != 0){
                // Add parent node list
                orderTraverseList.add(generateVal(parentList));
                // Generate children node list
                ArrayList<TreeNode> childrenList = generateChildren(parentList);
                //orderTraverseList.add(generateVal(childrenList));
                parentList = childrenList;
            } 
            return orderTraverseList;
        }
         
        public ArrayList<Integer> generateVal(ArrayList<TreeNode> nodeList){
            ArrayList<Integer> valList = new ArrayList<Integer>();
            for(TreeNode node: nodeList){
                valList.add(node.val);
            }
            return valList;
        }
         
        public ArrayList<TreeNode> generateChildren(ArrayList<TreeNode> parentList){
            ArrayList<TreeNode> childrenList = new ArrayList<TreeNode>();
            // Pop nodes in list and save them to current level list.
            for(TreeNode node: parentList){
                // Save all children of nodes in queue1 to queue2
                if(node.left != null){
                    childrenList.add(node.left);
                }
                if(node.right != null){
                    childrenList.add(node.right);
                }
            }
            return childrenList;
        }
    

    各种奇葩的🌲

    1. 判断是不是平衡二叉树

    平衡二叉树就是每个节点左右子树高度差绝对值不超过1的二叉树,因此先递归计算左右子树的高度,再判断当前节点左右子树高度差是否满足条件,若满足,再对左右子树的结果做与运算即可。

    public boolean isBalanced (TreeNode root) {
            // write code here
            if(root == null)    return true;
            int leftTreeHeight = getHeight(root.left);
            int rightTreeHeight = getHeight(root.right);
            if(Math.abs(leftTreeHeight - rightTreeHeight) <= 1){
                return isBalanced(root.left) && isBalanced(root.right);
            }
            return false;
        }
         
        public int getHeight(TreeNode root){
            if(root == null)    return 0;
            int left = getHeight(root.left) + 1;
            int right = getHeight(root.right) + 1;
            return (left > right) ? left: right;
        }
    

    相关文章

      网友评论

        本文标题:2020-07-11【树】

        本文链接:https://www.haomeiwen.com/subject/pzmicktx.html