学习小组Day6笔记-FoMo

作者: FOMOoo | 来源:发表于2020-05-06 22:49 被阅读0次

    R包安装

    install.packages(“包”)
    BiocManager::install(“包”)

    R包加载

    library(包)

    dplyr包

    示例数据test <- iris[c(1:2,51:52,101:102),]

    mutate() :新增列

    mutate(test, new = Sepal.Length * Sepal.Width)

    select():按列筛选

    可按列号、列名筛选

    > select(test,1)
        Sepal.Length
    1            5.1
    2            4.9
    51           7.0
    52           6.4
    101          6.3
    102          5.8
    > select(test,c(1,5))
        Sepal.Length    Species
    1            5.1     setosa
    2            4.9     setosa
    51           7.0 versicolor
    52           6.4 versicolor
    101          6.3  virginica
    102          5.8  virginica
    > select(test,Sepal.Length)
        Sepal.Length
    1            5.1
    2            4.9
    51           7.0
    52           6.4
    101          6.3
    102          5.8
    > select(test,Petal.Length,Petal.Width)
        Petal.Length Petal.Width
    1            1.4         0.2
    2            1.4         0.2
    51           4.7         1.4
    52           4.5         1.5
    101          6.0         2.5
    102          5.1         1.9
    
    > vars <- c("Petal.Length","Petal.Width")
    > select(test,one_of(vars))
        Petal.Length Petal.Width
    1            1.4         0.2
    2            1.4         0.2
    51           4.7         1.4
    52           4.5         1.5
    101          6.0         2.5
    102          5.1         1.9
    

    filter():筛选行

    > filter(test,Species == "setosa")
      Sepal.Length Sepal.Width Petal.Length Petal.Width Species
    1          5.1         3.5          1.4         0.2  setosa
    2          4.9         3.0          1.4         0.2  setosa
    
    > filter(test,Species == "setosa" & Sepal.Length > 5)
      Sepal.Length Sepal.Width Petal.Length Petal.Width Species
    1          5.1         3.5          1.4         0.2  setosa
    
    > filter(test,Species %in% c("setosa","versicolor"))
      Sepal.Length Sepal.Width Petal.Length Petal.Width    Species
    1          5.1         3.5          1.4         0.2     setosa
    2          4.9         3.0          1.4         0.2     setosa
    3          7.0         3.2          4.7         1.4 versicolor
    4          6.4         3.2          4.5         1.5 versicolor
    

    arrange():按某1列或某几列对整个表格进行排序

    > arrange(test,Sepal.Length) # 默认为从小到大
      Sepal.Length Sepal.Width Petal.Length Petal.Width    Species
    1          4.9         3.0          1.4         0.2     setosa
    2          5.1         3.5          1.4         0.2     setosa
    3          5.8         2.7          5.1         1.9  virginica
    4          6.3         3.3          6.0         2.5  virginica
    5          6.4         3.2          4.5         1.5 versicolor
    6          7.0         3.2          4.7         1.4 versicolor
    > arrange(test,desc(Sepal.Length)) #使用desc使排序为从大到小
      Sepal.Length Sepal.Width Petal.Length Petal.Width    Species
    1          7.0         3.2          4.7         1.4 versicolor
    2          6.4         3.2          4.5         1.5 versicolor
    3          6.3         3.3          6.0         2.5  virginica
    4          5.8         2.7          5.1         1.9  virginica
    5          5.1         3.5          1.4         0.2     setosa
    6          4.9         3.0          1.4         0.2     setosa
    

    summarise():汇总

    > summarise(test, mean(Sepal.Length), sd(Sepal.Length))
    # 计算Sepal.Length的平均值和标准差
      mean(Sepal.Length) sd(Sepal.Length)
    1           5.916667        0.8084965
    
    > group_by(test, Species) #按Species分组
    # A tibble: 6 x 5
    # Groups:   Species [3]
      Sepal.Length Sepal.Width Petal.Length Petal.Width Species   
    *        <dbl>       <dbl>        <dbl>       <dbl> <fct>     
    1          5.1         3.5          1.4         0.2 setosa    
    2          4.9         3            1.4         0.2 setosa    
    3          7           3.2          4.7         1.4 versicolor
    4          6.4         3.2          4.5         1.5 versicolor
    5          6.3         3.3          6           2.5 virginica 
    6          5.8         2.7          5.1         1.9 virginica 
    
    > summarise(group_by(test,Species),mean(Sepal.Length),sd(Sepal.Length))
    # 先按照Species分组,计算每组Sepal.Length的平均值和标准差
    # A tibble: 3 x 3
      Species    `mean(Sepal.Length)` `sd(Sepal.Length)`
      <fct>                     <dbl>              <dbl>
    1 setosa                     5                 0.141
    2 versicolor                 6.7               0.424
    3 virginica                  6.05              0.354
    

    dplyr的两个实用技能

    管道操作 %>%(快键键:cmd+shift+M)

    管道操作可以连续传参,省去中间变量。左侧作为参数传入右侧函数内部

    > test %>% group_by(Species) %>% 
    +   summarise(mean(Sepal.Length), sd(Sepal.Length))
    # A tibble: 3 x 3
      Species    `mean(Sepal.Length)` `sd(Sepal.Length)`
      <fct>                     <dbl>              <dbl>
    1 setosa                     5                 0.141
    2 versicolor                 6.7               0.424
    3 virginica                  6.05              0.354
    

    count统计某列的unique值

    > count(test,Species)
    # A tibble: 3 x 2
      Species        n
      <fct>      <int>
    1 setosa         2
    2 versicolor     2
    3 virginica      2
    

    dplyr处理关系数据

    演示数据

    > test1 <- data.frame(x = c('b','e','f','x'), 
    +                     z = c("A","B","C",'D'),
    +                     stringsAsFactors = F)
    > test1
      x z
    1 b A
    2 e B
    3 f C
    4 x D
    > test2 <- data.frame(x = c('a','b','c','d','e','f'), 
    +                     y = c(1,2,3,4,5,6),
    +                     stringsAsFactors = F)
    > test2 
      x y
    1 a 1
    2 b 2
    3 c 3
    4 d 4
    5 e 5
    6 f 6
    

    inner_join:取交集

    > inner_join(test1,test2,by="x") #取x的交集
      x z y
    1 b A 2
    2 e B 5
    3 f C 6
    

    left_jion:左连

    > left_join(test1, test2, by = 'x')
      x z  y
    1 b A  2
    2 e B  5
    3 f C  6
    4 x D NA
    > left_join(test2, test1, by = 'x')
      x y    z
    1 a 1 <NA>
    2 b 2    A
    3 c 3 <NA>
    4 d 4 <NA>
    5 e 5    B
    6 f 6    C
    

    full_join:全连

    > full_join( test1, test2, by = 'x')
      x    z  y
    1 b    A  2
    2 e    B  5
    3 f    C  6
    4 x    D NA
    5 a <NA>  1
    6 c <NA>  3
    7 d <NA>  4
    

    semi_join:半连接-返回能够与y表匹配的x表所有记录

    > semi_join(x = test1, y = test2,by="x") # x=,y=可以省略
      x z
    1 b A
    2 e B
    3 f C
    

    anti_join:反连接—返回无法与y表匹配的x表的所记录

    > anti_join(x = test2, y = test1, by = 'x') # x=,y=可以省略
      x y
    1 a 1
    2 c 3
    3 d 4
    

    bind_rows,bind_cols:简单合并

    相当于base包里的cbind()函数和rbind()函数

    bind_rows()函数需要两个数据框列数相同
    bind_cols()函数需要两个数据框行数相同

    示例数据

    > test1 <- data.frame(x = c(1,2,3,4), y = c(10,20,30,40))
    > test2 <- data.frame(x = c(5,6), y = c(50,60))
    > test3 <- data.frame(z = c(100,200,300,400))
    > test1
      x  y
    1 1 10
    2 2 20
    3 3 30
    4 4 40
    > test2
      x  y
    1 5 50
    2 6 60
    > test3
        z
    1 100
    2 200
    3 300
    4 400
    
    bind_rows(test1, test2)
    ##   x  y
    ## 1 1 10
    ## 2 2 20
    ## 3 3 30
    ## 4 4 40
    ## 5 5 50
    ## 6 6 60
    bind_cols(test1, test3)
    ##   x  y   z
    ## 1 1 10 100
    ## 2 2 20 200
    ## 3 3 30 300
    ## 4 4 40 400
    

    相关文章

      网友评论

        本文标题:学习小组Day6笔记-FoMo

        本文链接:https://www.haomeiwen.com/subject/qbxgghtx.html