3. DNN(2)

作者: 抠脚大汉QAQ | 来源:发表于2019-03-14 18:43 被阅读0次
file1: Layer
class FullyConnection(object):

    # in_size : X`s features number
    # out_size : Z`s features number
    # batch_size :  how many sample in one batch

    def __init__(self, in_size, out_size):
        self.w = np.random.randn(in_size, out_size)  # with R(in_size,out_size)
        self.b = np.random.randn(out_size, 1)  # with R(out_size,1)
        self.cur_x = None
        self.cur_z = None

"""
 前向传播: 筛选X的特征 输出对应Z
"""
    def forward(self, batch_x):
        """
        Args:
            batch_x: with R(batch_size,in_size)
        Returns:
            z : with R(batch_size,out_size)
        """

        self.cur_x = batch_x

        # z = (x*m) + b.T
        z = np.matmul(batch_x, self.w) + self.b.T

        self.cur_z = z

        return z

"""
反向传播:根据 计算出的dz_w 和 传回的dl_z 计算dl_w 然后更新w的参数
"""

    def backward(self, dl_z, lr):
        """
        Args:
            z: R(batch_size, out_size)
            dl_z: R(batch_size, out_size)
        Returns:
            dl_x :R(batch_size,in_size)
        """

        batch_size = self.cur_x.shape[0]
        in_size = self.cur_x.shape[1]
        out_size = self.cur_z.shape[1]

        dz_w = np.expand_dims(self.cur_x, 1) # R(bt,1,in)
        dz_b = np.ones([batch_size, out_size, 1])

        dz_x = np.expand_dims(self.w, 0)  # R(1(broadcast to bt),out,in)
        
        dl_x = np.empty([batch_size, in_size])
        for i in range(batch_size):
            #dl_z[I] :R(1,out) dz_x[0].T :R(out,in) --> dl_x[i]:R(1,in)
            dl_x[i] = np.matmul(dl_z[i], dz_x[0].T)

        dl_z = np.expand_dims(dl_z, 2)  # R(bt,out,1)

        dl_w = dl_z * dz_w #R(bt,out,in)
        dl_b = dl_z * dz_b #R(bt,out,1)

        # update
        self.step(dl_w, dl_b, lr)

        return dl_x

    def step(self, dw, db, lr):
        # w: R(in,out) b:R(out,1)
        self.w -= np.mean(dw, axis=0).T * lr
        self.b -= np.mean(db, axis=0) * lr
file1: Activate

 #  in_size : Z`s features number
 #  out_size :  A`s (pre_y) features number 
 #  the in_size and out_size are equal in this activated layer

class SoftMax(object): 

"""
  softmax :  将所有输出特征值的概率归一化
"""

    def __init__(self):
        self.cur_z = None
        self.exp_z = None
        self.preY = None

    def forward(self, z):
        """
        Args:
            z: with R(batch_size, in_size)
        Returns:
            a: with R(batch_size, out_size)
        """
        self.cur_z = z
        self.exp_z = np.exp(-z)
        dom = np.sum(self.exp_z, axis=1).reshape([z.shape[0], 1])
        a = self.exp_z / dom
        self.preY = a
        return a

    def backward(self, dl_y):
        """
        Args:
            dl_y:  R(batch_size, out_size) 
        Returns:
            dl_z: R(batch_size, in_size)
        """

        batch_size = self.cur_z.shape[0]
        in_size = self.cur_z.shape[1]

        dy_z = np.empty([batch_size, out_size, out_size])

        for i in range(batch_size):
            sing_y_sample = self.preY[i]  # R(1,out_size)
            sample_grad = np.matmul(sing_y_sample.T, sing_y_sample)  # R(out_size,out_size)

            diag = np.diag(sing_y_sample) # 生成对角矩阵

            sample_grad = sample_grad - diag #更新对角线元素

            dy_z[i] = sample_grad # 更新每个样本的剃度值

        dl_z = np.empty([batch_size, in_size])

        for i in range(batch_size):
            # dl_y[i] : R(1,in_size)
            # dy_z[i] : R(in_size,in_size)

            dl_z[i] = np.matmul(dl_y[i], dy_z[i])  # R(1,in_size)

        return dl_z  # R(batch_size, in_size)

"""
  Sigmoid : 把输出值控制在0,1范围内
"""

class Sigmoid(object):
    def __init__(self):
        self.a = None

    def forward(self, z):
        """
        Args:
            z: R(batch_size, in_size)

        Returns:
            a: R(batch_size, out_size)
        """
        self.a = 1 / (1 + np.exp(-z))
        return self.a

    def backward(self, dl_a):
        """
        dl_a:  R(batch_size,out_size)
        Returns:
            dl_z: R(batch_size, in_size)
        """

        da_z = self.a * (1 - self.a)  # R(batch_size,in_size)
        dl_z = dl_a * da_z

        return dl_z  # R(batch_size,in_size)

"""
  ReLU : 把输出值控制在0,1范围内
"""
    def __init__(self):
        self.a = None

    def forward(self, z):
        # z: R(batch_size,in_size)
        a = z.copy()
        a[a < 0] = 0
        self.a = a
        return a

    def backward(self, dl_a):
        """
        Args:
            dl_a:  R(batch_size,out_size)
        Returns:
            dl_z: R(batch_size,in_size)
        """

        batch_size = self.a.shape[0]
        in_size = self.a.shape[1]

        da_z = self.a
        da_z[da_z != 0] = 1

        dl_z = dl_a * da_z

        return dl_z

file3. Loss
class MSE(object):
    
    def __init__(self):
        self.pred_y = None
        self.true_y = None

    def forward(self, pred_y, true_y):
        """
        Args:
            pred_y: R(batch_size, in_size)
            true_y: R(batch_size, in_size)
        Returns:
            loss: R(batch_size, 1)
        """
        
        self.pred_y = pred_y
        self.true_y = true_y

        dif = pred_y - true_y
        loss = np.sum(dif ** 2, axis=1)
        
        return loss.reshape([pred_y.shape[0], 1])

    def backward(self):
        dl_y = self.pred_y - self.true_y # dl_y : R(batch_size, out_size)
        return dl_y  
file4. model
from layer import FullyConnection
from activate import SoftMax, Sigmoid,ReLU

# 三层
# 第一层: sigmoid
# 第二层:ReLU
# 第三层:SoftMax

class LogisticRegression(object):
    def __init__(self, in_size, n_classes, lr):

        self.fc1 = FullyConnection(in_size, 128) # init(in_size,out_size)
        self.fc2 = FullyConnection(128, 50)
        self.fc3 = FullyConnection(50,n_classes)

        self.sigmoid1 = Sigmoid()
        self.sigmoid2 = Sigmoid()
        self.softmax = SoftMax()
        self.ReLU1 = ReLU()
        self.ReLU2 = ReLU()

        self.lr = lr

    def forward(self, batch_x):

        z1 = self.fc1.forward(batch_x)
        a1 = self.sigmoid1.forward(z1)

        z2 = self.fc2.forward(a1)
        a2 = self.ReLU1.forward(z2)

        z3 = self.fc3.forward(a2)
        y = self.softmax.forward(z3)

        return y

    def backward(self, dl_y):
        """
        Args:
            dl_y: R(batch_size, n_classes)
        Returns:

        """
        dl_z3 = self.softmax.backward(dl_y)
        dl_a2 = self.fc3.backward(dl_z3,self.lr)

        dl_z2 = self.ReLU1.backward(dl_a2)  # R(batch_size, n_classes, n_classes)
        dl_a1 = self.fc2.backward(dl_z2, self.lr)  # R(1, n_classes, batch_size), R(1, 1, batch_size)

        dl_z1 = self.sigmoid1.backward(dl_a1)
        self.fc1.backward(dl_z1, self.lr)

经过训练之后,出现了很严重的梯度消失问题。
在识别手写数字的训练中,训练的准确度趋近于0.1 (小声bb:等于我的算法是在瞎JB猜)

问题出在ReLU中传出的a可能特别大,虽然传入ReLU的z经过了sigmoid的挤压,但由于我每一层的参数都是随机生成的,w可能特别大。这样会导致softmax中e^-z 趋近于0

最后我决定更换我的损失函数,采用交叉熵进行计算和更新
以下是更新后的loss.py

相关文章

网友评论

    本文标题:3. DNN(2)

    本文链接:https://www.haomeiwen.com/subject/qclcmqtx.html