KOOM V1.0.5 框架解析

作者: Stan_Z | 来源:发表于2020-12-16 22:51 被阅读0次

    快手在2020年中旬开源了一个线上OOM监控上报的框架:KOOM,这里简单研究下。

    项目地址:https://github.com/KwaiAppTeam/KOOM/tree/v1.0.5

    一、官方项目介绍

    1.1 描述:
    KOOM是快手性能优化团队在处理移动端OOM问题的过程中沉淀出的一套完整解决方案。其中Android Java内存部分在LeakCanary的基础上进行了大量优化,解决了线上内存监控的性能问题,在不影响用户体验的前提下线上采集内存镜像并解析。从 2020 年春节后在快手主APP上线至今解决了大量OOM问题,其性能和稳定性经受住了海量用户与设备的考验,因此决定开源以回馈社区。

    1.2 特点:

    • 比leakCanary更丰富的泄漏场景检测;
    • 比leakCanary更好的检测性能;
    • 功能全面的支持线上大规模部署的闭环监控系统;

    1.3 KOOM框架


    1.4 快手KOOM核心流程包括:

    • 配置下发决策;
    • 监控内存状态;
    • 采集内存镜像;
    • 解析镜像文件(以下简称hprof)生成报告并上传;
    • 问题聚合报警与分配跟进。

    1.5 泄漏检测触发机制优化:
    泄漏检测触发机制leakCanary做法是GC过后对象WeakReference一直不被加入 ReferenceQueue,它可能存在内存泄漏。这个过程会主动触发GC做确认,可能会造成用户可感知的卡顿,而KOOM采用内存阈值监控来触发镜像采集,将对象是否泄漏的判断延迟到了解析时,阈值监控只要在子线程定期获取关注的几个内存指标即可,性能损耗很低。

    1.6 heap dump优化:
    传统方案会冻结应用几秒,KOOM会fork新进程来执行dump操作,对父进程的正常执行没有影响。暂停虚拟机需要调用虚拟机的art::Dbg::SuspendVM函数,谷歌从Android 7.0开始对调用系统库做了限制,快手自研了kwai-linker组件,通过caller address替换和dl_iterate_phdr解析绕过了这一限制。

    随机采集线上真实用户的内存镜像,普通dump和fork子进程dump阻塞用户使用的耗时如下:

    image.png

    而从官方给出的测试数据来看,效果似乎是非常好的。

    二、官方demo演示

    这里就直接跑下官方提供的koom-demo

    点击按钮,经过dump heap -> heap analysis -> report cache/koom/report/三个流程(heap analysis时间会比较长,但是完全不影响应用的正常操作),最终在应用的cache/koom/report里生成json报告:

    cepheus:/data/data/com.kwai.koom.demo/cache/koom/report # ls
    2020-12-08_15-23-32.json
    

    模拟一个最简单的单例CommonUtils持有LeakActivity实例的内存泄漏,看下json最终上报的内容是个啥:

    {
       "analysisDone":true,
       "classInfos":[
           {
               "className":"android.app.Activity",
               "instanceCount":4,
               "leakInstanceCount":3
           },
           {
               "className":"android.app.Fragment",
               "instanceCount":4,
               "leakInstanceCount":3
           },
           {
               "className":"android.graphics.Bitmap",
               "instanceCount":115,
               "leakInstanceCount":0
           },
           {
               "className":"libcore.util.NativeAllocationRegistry",
               "instanceCount":1513,
               "leakInstanceCount":0
           },
           {
               "className":"android.view.Window",
               "instanceCount":4,
               "leakInstanceCount":0
           }
       ],
       "gcPaths":[
           {
               "gcRoot":"Local variable in native code",
               "instanceCount":1,
               "leakReason":"Activity Leak",
               "path":[
                   {
                       "declaredClass":"java.lang.Thread",
                       "reference":"android.os.HandlerThread.contextClassLoader",
                       "referenceType":"INSTANCE_FIELD"
                   },
                   {
                       "declaredClass":"java.lang.ClassLoader",
                       "reference":"dalvik.system.PathClassLoader.runtimeInternalObjects",
                       "referenceType":"INSTANCE_FIELD"
                   },
                   {
                       "declaredClass":"",
                       "reference":"java.lang.Object[]",
                       "referenceType":"ARRAY_ENTRY"
                   },
                   {
                       "declaredClass":"com.kwai.koom.demo.CommonUtils",
                       "reference":"com.kwai.koom.demo.CommonUtils.context",
                       "referenceType":"STATIC_FIELD"
                   },
                   {
                       "reference":"com.kwai.koom.demo.LeakActivity",
                       "referenceType":"instance"
                   }
               ],
               "signature":"378fc01daea06b6bb679bd61725affd163d026a8"
           }
       ],
       "runningInfo":{
           "analysisReason":"RIGHT_NOW",
           "appVersion":"1.0",
           "buildModel":"MI 9 Transparent Edition",
           "currentPage":"LeakActivity",
           "dumpReason":"MANUAL_TRIGGER",
           "jvmMax":512,
           "jvmUsed":2,
           "koomVersion":1,
           "manufacture":"Xiaomi",
           "nowTime":"2020-12-08_16-07-34",
           "pss":32,
           "rss":123,
           "sdkInt":29,
           "threadCount":17,
           "usageSeconds":40,
           "vss":5674
       }
    }
    

    这里主要分三个部分:类信息、gc引用路径、运行基本信息。这里从gcPaths中能看出LeakActivity被CommonUtils持有了引用。

    框架使用这里参考官方接入文档即可,这里不赘述:
    https://github.com/KwaiAppTeam/KOOM/blob/master/README.zh-CN.md

    三、框架解析

    3.1 类图

    3.2 时序图

    KOOM初始化流程

    KOOM执行初始化方法,10秒延迟之后会在threadHandler子线程中先通过check状态判断是否开始工作,工作内容是先检查是不是有未完成分析的文件,如果有就就触发解析,没有则监控内存。

    heap dump流程

    HeapDumpTrigger

    • startTrack:监控自动触发dump hprof操作。开启内存监控,子线程5s触发一次检测,看当前是否满足触发heap dump的条件。条件是由一系列阀值组织,这部分后面详细分析。满足阀值后会通过监听回调给HeapDumpTrigger去执行trigger。
    • trigger:主动触发dump hprof操作。这里是fork子进程来处理的,这部分也到后面详细分析。dump完成之后通过监听回调触发HeapAnalysisTrigger.startTrack触发heap分析流程。

    heap analysis流程

    HeapAnalysisTrigger

    • startTrack 根据策略触发hprof文件分析。
    • trigger 直接触发hprof文件分析。由单独起进程的service来处理,工作内容主要分内存泄漏检测(activity/fragment/bitmap/window)和泄漏数据整理缓存为json文件以供上报。

    四、核心源码解析

    经过前面的分析,基本上对框架的使用和结构有了一个宏观了解,这部分就打算对一些实现细节进行简单分析。
    4.1 内存监控触发dump规则

    这里主要是研究HeapMonitor中isTrigger规则,每隔5S都会循环判断该触发条件。

    com/kwai/koom/javaoom/monitor/HeapMonitor.java
    @Override
    public boolean isTrigger() {
      if (!started) {
       return false;
      }
      HeapStatus heapStatus = currentHeapStatus();
      if (heapStatus.isOverThreshold) {
       if (heapThreshold.ascending()) {
         if (lastHeapStatus == null || heapStatus.used >= lastHeapStatus.used) {
           currentTimes++;
         } else {
           currentTimes = 0;
         }
       } else {
         currentTimes++;
       }
      } else {
       currentTimes = 0;
      }
      lastHeapStatus = heapStatus;
      return currentTimes >= heapThreshold.overTimes();
    }
    private HeapStatus lastHeapStatus;
    private HeapStatus currentHeapStatus() {
      HeapStatus heapStatus = new HeapStatus();
      heapStatus.max = Runtime.getRuntime().maxMemory();
      heapStatus.used = Runtime.getRuntime().totalMemory() - Runtime.getRuntime().freeMemory();
      heapStatus.isOverThreshold = 100.0f * heapStatus.used / heapStatus.max > heapThreshold.value();
      return heapStatus;
    }
    
    com/kwai/koom/javaoom/common/KConstants.java
    
    public static class HeapThreshold {
      public static int VM_512_DEVICE = 510;
      public static int VM_256_DEVICE = 250;
      public static int VM_128_DEVICE = 128;
      public static float PERCENT_RATIO_IN_512_DEVICE = 80;
      public static float PERCENT_RATIO_IN_256_DEVICE = 85;
      public static float PERCENT_RATIO_IN_128_DEVICE = 90;
    
      public static float getDefaultPercentRation() {
       int maxMem = (int) (Runtime.getRuntime().maxMemory() / MB);
       if (maxMem >= VM_512_DEVICE) {
         return KConstants.HeapThreshold.PERCENT_RATIO_IN_512_DEVICE;
       } else if (maxMem >= VM_256_DEVICE) {
         return KConstants.HeapThreshold.PERCENT_RATIO_IN_256_DEVICE;
       } else if (maxMem >= VM_128_DEVICE) {
         return KConstants.HeapThreshold.PERCENT_RATIO_IN_128_DEVICE;
       }
       return KConstants.HeapThreshold.PERCENT_RATIO_IN_512_DEVICE;
      }
    
      public static int OVER_TIMES = 3;
      public static int POLL_INTERVAL = 5000;
    }
    

    这里就是针对不同内存大小做了不同的阀值比例:

    • 应用内存>512M 80%
    • 应用内存>256M 85%
    • 应用内存>128M 90%
    • 低于128M的默认按80%

    应用已使用内存/最大内存超过该比例则会触发heapStatus.isOverThreshold。连续满足3次触发heap dump,但是这个过程会考虑内存增长性,3次范围内出现了使用内存下降或者使用内存/最大内存低于对应阀值了则清零。

    因此规则总结为:3次满足>阀值条件且内存一直处于上升期才触发。这样能减少无效的dump。

    4.2 fork进程执行dump操作实现

    目前项目中默认使用ForkJvmHeapDumper来执行dump。

    com/kwai/koom/javaoom/dump/ForkJvmHeapDumper.java
    @Override
    public boolean dump(String path) {
      boolean dumpRes = false;
      try {
       int pid = trySuspendVMThenFork();//暂停虚拟机,copy-on-write fork子进程
       if (pid == 0) {//子进程中
         Debug.dumpHprofData(path);//dump hprof
         exitProcess();//_exit(0) 退出进程
       } else {//父进程中
         resumeVM();//resume当前虚拟机
         dumpRes = waitDumping(pid);//waitpid异步等待pid进程结束
       }
      } catch (Exception e) {
       e.printStackTrace();
      }
      return dumpRes;
    }
    

    谷歌从Android 7.0开始对调用系统库做了限制,快手自研了kwai-linker组件,通过caller address替换和dl_iterate_phdr解析绕过了这一限制,详细分析在后续的这篇文章有展开:KOOM V1.0.5 fork dump方案解析

    官方文档对限制的说明:
    https://developer.android.google.cn/about/versions/nougat/android-7.0-changes

    4.3 内存泄漏检测实现

    内存泄漏检测核心代码在于SuspicionLeaksFinder.find

    public Pair<List<ApplicationLeak>, List<LibraryLeak>> find() {
      boolean indexed = buildIndex();
      if (!indexed) {
       return null;
      }
      initLeakDetectors();
      findLeaks();
      return findPath();
    }
    

    4.3.1 buildIndex()

    private boolean buildIndex() {
      Hprof hprof = Hprof.Companion.open(hprofFile.file());
      //选择可以作为gcroot的类类型
      KClass<GcRoot>[] gcRoots = new KClass[]{
         Reflection.getOrCreateKotlinClass(GcRoot.JniGlobal.class),
         //Reflection.getOrCreateKotlinClass(GcRoot.JavaFrame.class),
         Reflection.getOrCreateKotlinClass(GcRoot.JniLocal.class),
         //Reflection.getOrCreateKotlinClass(GcRoot.MonitorUsed.class),
         Reflection.getOrCreateKotlinClass(GcRoot.NativeStack.class),
         Reflection.getOrCreateKotlinClass(GcRoot.StickyClass.class),
         Reflection.getOrCreateKotlinClass(GcRoot.ThreadBlock.class),
         Reflection.getOrCreateKotlinClass(GcRoot.ThreadObject.class),
         Reflection.getOrCreateKotlinClass(GcRoot.JniMonitor.class)};
    
      //解析hprof文件为HeapGraph对象
      heapGraph = HprofHeapGraph.Companion.indexHprof(hprof, null,
         kotlin.collections.SetsKt.setOf(gcRoots));
      return true;
    }
    
    fun indexHprof(
       hprof: Hprof,
       proguardMapping: ProguardMapping? = null,
       indexedGcRootTypes: Set<KClass<out GcRoot>> = setOf(
           JniGlobal::class,
           JavaFrame::class,
           JniLocal::class,
           MonitorUsed::class,
           NativeStack::class,
           StickyClass::class,
           ThreadBlock::class,
           ThreadObject::class,
           JniMonitor::class
       )
    ): HeapGraph {
      //确认对应的record的index
      val index = HprofInMemoryIndex.createReadingHprof(hprof, proguardMapping, indexedGcRootTypes)
      //HprofHeapGraph是HeapGraph的实现类
      return HprofHeapGraph(hprof, index)
    }
    

    HprofInMemoryIndex.createReadingHprof核心逻辑:读取hprof文件,将不同内容封装为不同的record,然后将record转为索引化的index封装,之后查找内容可以通过index去索引到。

    HprofReader.readHprofRecords() 封装record

    • LoadClassRecord
    • InstanceSkipContentRecord
    • ObjectArraySkipContentRecord
    • PrimitiveArraySkipContentRecord

    HprofInMemoryIndex.onHprofRecord() 封装index:

    • classIndex
    • instanceIndex
    • objectArrayIndex
    • primitiveArrayIndex
    class HprofHeapGraph internal constructor(
       private val hprof: Hprof,
       private val index: HprofInMemoryIndex
    ) : HeapGraph {
    ...
      override val gcRoots: List<GcRoot>
       get() = index.gcRoots()
      override val objects: Sequence<HeapObject>
       get() {
         return index.indexedObjectSequence().map {wrapIndexedObject(it.second, it.first)}
       }
      override val classes: Sequence<HeapClass>
       get() {
         return index.indexedClassSequence().map {val objectId = it.first
               val indexedObject = it.second
               HeapClass(this, indexedObject, objectId)
             }
       }
      override val instances: Sequence<HeapInstance>
       get() {
         return index.indexedInstanceSequence().map {val objectId = it.first
               val indexedObject = it.second
               val isPrimitiveWrapper = index.primitiveWrapperTypes.contains(indexedObject.classId)
               HeapInstance(this, indexedObject, objectId, isPrimitiveWrapper)
             }
       }
    
      override val objectArrays: Sequence<HeapObjectArray>
       get() = index.indexedObjectArraySequence().map {val objectId = it.first
         val indexedObject = it.second
         val isPrimitiveWrapper = index.primitiveWrapperTypes.contains(indexedObject.arrayClassId)
         HeapObjectArray(this, indexedObject, objectId, isPrimitiveWrapper)
       }
    
      override val primitiveArrays: Sequence<HeapPrimitiveArray>
       get() = index.indexedPrimitiveArraySequence().map {val objectId = it.first
         val indexedObject = it.second
         HeapPrimitiveArray(this, indexedObject, objectId)
       }
    

    Hprof 经过层层转换最终封装为HprofHeapGraph。

    简而言之,这部分功能主要是将Hrpof文件按照扫描的格式解析为结构化的索引关系图,索引化后的内容封装为HprofHeapGraph,由它去通过对应的起始索引去定位每类数据。没有细抠这部分的实现细节,实现这个功能的库之前是squere的HAHA,现在改为shark,但是提供的功能大同小异。

    4.3.2 initLeakDetectors() 与findLeaks()

    初始化泄漏检测者:

    private void initLeakDetectors() {
      addDetector(new ActivityLeakDetector(heapGraph));
      addDetector(new FragmentLeakDetector(heapGraph));
      addDetector(new BitmapLeakDetector(heapGraph));
      addDetector(new NativeAllocationRegistryLeakDetector(heapGraph));
      addDetector(new WindowLeakDetector(heapGraph));
      ClassHierarchyFetcher.initComputeGenerations(computeGenerations);
      leakReasonTable = new HashMap<>();
    }
    

    初始化各类型泄漏的检测者,主要包含Activity、Fragment、Bitmap+NativeAllocationRegistry、window的泄漏检测。

    其次是梳理以上几类对象类继承关系串,检测覆盖到他们的子类。

    public void findLeaks() {
      KLog.i(TAG, "start find leaks");
      //从HprofHeapGraph中获取所有instance
      Sequence<HeapObject.HeapInstance> instances = heapGraph.getInstances();
      Iterator<HeapObject.HeapInstance> instanceIterator = instances.iterator();
      while (instanceIterator.hasNext()) {
        HeapObject.HeapInstance instance = instanceIterator.next();
       if (instance.isPrimitiveWrapper()) {
          continue;
       }
        ClassHierarchyFetcher.process(instance.getInstanceClassId(),
           instance.getInstanceClass().getClassHierarchy());
       for (LeakDetector leakDetector : leakDetectors) {
          //是检测对象的子类&满足对应泄漏条件
          if (leakDetector.isSubClass(instance.getInstanceClassId())
              && leakDetector.isLeak(instance)) {
            ClassCounter classCounter = leakDetector.instanceCount();
           if (classCounter.leakInstancesCount <=
                SAME_CLASS_LEAK_OBJECT_GC_PATH_THRESHOLD) {
              leakingObjects.add(instance.getObjectId());
             leakReasonTable.put(instance.getObjectId(), leakDetector.leakReason());
           }
          }
        }
      }
    
      //关注class和对应instance数量,加入json
      HeapAnalyzeReporter.addClassInfo(leakDetectors);
      findPrimitiveArrayLeaks();
      findObjectArrayLeaks();
    }
    

    这里重点看看各类型对象是如何判断泄漏的:

    ActivityLeakDetector:
    
    private static final String ACTIVITY_CLASS_NAME = "android.app.Activity";
    private static final String FINISHED_FIELD_NAME = "mFinished";
    private static final String DESTROYED_FIELD_NAME = "mDestroyed";
    public boolean isLeak(HeapObject.HeapInstance instance) {
      activityCounter.instancesCount++;
      HeapField destroyField = instance.get(ACTIVITY_CLASS_NAME, DESTROYED_FIELD_NAME);
      HeapField finishedField = instance.get(ACTIVITY_CLASS_NAME, FINISHED_FIELD_NAME);
      assert destroyField != null;
      assert finishedField != null;
      boolean abnormal = destroyField.getValue().getAsBoolean() == null
         || finishedField.getValue().getAsBoolean() == null;
      if (abnormal) {
       return false;
      }
      boolean leak = destroyField.getValue().getAsBoolean()
          || finishedField.getValue().getAsBoolean();
      if (leak) {
        activityCounter.leakInstancesCount++;
      }
      return leak;
    }
    

    mDestroyed和mFinish字段为true,但是实例还存在的Activity是疑似泄漏对象。

    FragmentLeakDetector:
    
      private static final String NATIVE_FRAGMENT_CLASS_NAME = "android.app.Fragment";
    // native android Fragment, deprecated as of API 28.
      private static final String SUPPORT_FRAGMENT_CLASS_NAME = "android.support.v4.app.Fragment";
    // pre-androidx, support library version of the Fragment implementation.
      private static final String ANDROIDX_FRAGMENT_CLASS_NAME = "androidx.fragment.app.Fragment";
    // androidx version of the Fragment implementation
    private static final String FRAGMENT_MANAGER_FIELD_NAME = "mFragmentManager”;
    private static final String FRAGMENT_MCALLED_FIELD_NAME = "mCalled”;//Used to verify that subclasses call through to super class.
    
    public FragmentLeakDetector(HeapGraph heapGraph) {
      HeapObject.HeapClass fragmentHeapClass =
          heapGraph.findClassByName(ANDROIDX_FRAGMENT_CLASS_NAME);
      fragmentClassName = ANDROIDX_FRAGMENT_CLASS_NAME;
      if (fragmentHeapClass == null) {
        fragmentHeapClass = heapGraph.findClassByName(NATIVE_FRAGMENT_CLASS_NAME);
       fragmentClassName = NATIVE_FRAGMENT_CLASS_NAME;
      }
    
      if (fragmentHeapClass == null) {
        fragmentHeapClass = heapGraph.findClassByName(SUPPORT_FRAGMENT_CLASS_NAME);
       fragmentClassName = SUPPORT_FRAGMENT_CLASS_NAME;
      }
    
      assert fragmentHeapClass != null;
      fragmentClassId = fragmentHeapClass.getObjectId();
      fragmentCounter = new ClassCounter();
    }
    
    public boolean isLeak(HeapObject.HeapInstance instance) {
      if (VERBOSE_LOG) {
        KLog.i(TAG, "run isLeak");
      }
      fragmentCounter.instancesCount++;
      boolean leak = false;
      HeapField fragmentManager = instance.get(fragmentClassName, FRAGMENT_MANAGER_FIELD_NAME);
      if (fragmentManager != null && fragmentManager.getValue().getAsObject() == null) {
        HeapField mCalledField = instance.get(fragmentClassName, FRAGMENT_MCALLED_FIELD_NAME);
       boolean abnormal = mCalledField == null || mCalledField.getValue().getAsBoolean() == null;
       if (abnormal) {
          KLog.e(TAG, "ABNORMAL mCalledField is null");
         return false;
       }
        leak = mCalledField.getValue().getAsBoolean();
       if (leak) {
          if (VERBOSE_LOG) {
            KLog.e(TAG, "fragment leak : " + instance.getInstanceClassName());
         }
          fragmentCounter.leakInstancesCount++;
       }
      }
      return leak;
    }
    

    这里分了三种fragment:

    • android.app.Fragment
    • android.support.v4.app.Fragment
    • androidx.fragment.app.Fragment

    对应的FragmentManager实例为null(这表示fragment被remove了)且满足对应的mCalled为true,即非perform状态,而是对应生命周期被回调状态(onDestroy),但是实例还存在的Fragment是疑似泄漏对象。

    BitmapLeakDetector
    
    private static final String BITMAP_CLASS_NAME = "android.graphics.Bitmap”;
    public boolean isLeak(HeapObject.HeapInstance instance) {
      if (VERBOSE_LOG) {
        KLog.i(TAG, "run isLeak");
      }
      bitmapCounter.instancesCount++;
      HeapField fieldWidth = instance.get(BITMAP_CLASS_NAME, "mWidth");
      HeapField fieldHeight = instance.get(BITMAP_CLASS_NAME, "mHeight");
      assert fieldHeight != null;
      assert fieldWidth != null;
      boolean abnormal = fieldHeight.getValue().getAsInt() == null
         || fieldWidth.getValue().getAsInt() == null;
      if (abnormal) {
        KLog.e(TAG, "ABNORMAL fieldWidth or fieldHeight is null");
       return false;
      }
    
      int width = fieldWidth.getValue().getAsInt();
      int height = fieldHeight.getValue().getAsInt();
      boolean suspicionLeak = width * height >= KConstants.BitmapThreshold.DEFAULT_BIG_BITMAP;
      if (suspicionLeak) {
        KLog.e(TAG, "bitmap leak : " + instance.getInstanceClassName() + " " +
            "width:" + width + " height:" + height);
       bitmapCounter.leakInstancesCount++;
      }
      return suspicionLeak;
    }
    

    这里是针对Bitmap size做判断,超过768*1366这个size的认为泄漏。

    另外,NativeAllocationRegistryLeakDetector和WindowLeakDetector两类还没做具体泄漏判断规则,不参与对象泄漏检测,只是做了统计。

    总结:
    整体看下来,KOOM有两个值得借鉴的点:
    1.触发内存泄漏检测,常规是watcher activity/fragment的onDestroy,而KOOM是定期轮询查看当前内存是否到达阀值;
    2.dump hprof,常规是对应进程dump,而KOOM是fork进程dump。

    参考:
    快手自研OOM解决方案KOOM今日宣布开源

    相关文章

      网友评论

        本文标题:KOOM V1.0.5 框架解析

        本文链接:https://www.haomeiwen.com/subject/qdtagktx.html