美文网首页
线上内存泄漏工具Koom

线上内存泄漏工具Koom

作者: 咚咚_Coding | 来源:发表于2021-11-28 12:05 被阅读0次

    首先看下LeakCanary原理

    在 Java 中软引用(SoftReference)和弱引用(WeakReference)在创建的时候都可以关联一个引用队列。
    当 GC(垃圾回收线程)准备回收一个对象时,如果发现它还仅有软引用(或弱引用,或虚引用)指向它,就会在回收该对象之前,
    把这个软引用(或弱引用,或虚引用)加入到与之关联的引用队列(ReferenceQueue)中。如果一个软引用(或弱引用,或虚引用)
    对象本身在引用队列中,则说明该引用对象所指向的对象被回收了。
    
    LeakCanary 的实现就是将所有的 Activity 或 Fragment 实例放入到弱引用中,并关联一个引用队列。
    如果实例进行了回收,那么弱引用就会放入到 ReferenceQueue 中,并调用 
    removeWeaklyReachableObjects 方法将已经回收的对象从watchedObjects 
    集合中删除,然后剩下的就是没有被回收,发生内存泄漏的。如果一段时间
    后,所监控的实例还未在 ReferenceQueue 中出现,那么可以证明出现了内存
    泄漏导致了实例没有被回收。
    

    LeakCanary Code

    AppWatcher
    fun appDefaultWatchers(
    application: Application,
    reachabilityWatcher: ReachabilityWatcher = objectWatcher
    ): List<InstallableWatcher> {
    return listOf(
      ActivityWatcher(application, reachabilityWatcher),
      FragmentAndViewModelWatcher(application, reachabilityWatcher),
      RootViewWatcher(reachabilityWatcher),
      ServiceWatcher(reachabilityWatcher)
    )}
    
    fun manualInstall(
    application: Application,
    retainedDelayMillis: Long = TimeUnit.SECONDS.toMillis(5),
    watchersToInstall: List<InstallableWatcher> = appDefaultWatchers(application) ) {
    checkMainThread()
    check(retainedDelayMillis >= 0) {
      "retainedDelayMillis $retainedDelayMillis must be at least 0 ms"
    }
    this.retainedDelayMillis = retainedDelayMillis
    // Requires AppWatcher.objectWatcher to be set
    LeakCanaryDelegate.loadLeakCanary(application)
    watchersToInstall.forEach {
      it.install()
    }}
    
    ActivityWatcher 配置项
    private val lifecycleCallbacks =
    object : Application.ActivityLifecycleCallbacks by noOpDelegate() {
      override fun onActivityDestroyed(activity: Activity) {
        reachabilityWatcher.expectWeaklyReachable(
          activity, "${activity::class.java.name} received Activity#onDestroy() callback"
        )
      }
    }
    
    ObjectWatcher
    private val watchedObjects = mutableMapOf<String, KeyedWeakReference>()
    private val queue = ReferenceQueue<Any>()
    
    @Synchronized override fun expectWeaklyReachable(watchedObject: Any,description: String) {
    removeWeaklyReachableObjects()
    val key = UUID.randomUUID()
      .toString()
    val watchUptimeMillis = clock.uptimeMillis()
    val reference =
      KeyedWeakReference(watchedObject, key, description, watchUptimeMillis, queue)
    SharkLog.d {
      "Watching " +
        (if (watchedObject is Class<*>) watchedObject.toString() else "instance of ${watchedObject.javaClass.name}") +
        (if (description.isNotEmpty()) " ($description)" else "") +
        " with key $key"
    }
    watchedObjects[key] = reference //key:uuid, value:弱引用
    checkRetainedExecutor.execute {
      moveToRetained(key)
    }
    }
    private fun removeWeaklyReachableObjects() {
    // WeakReferences are enqueued as soon as the object to which they point to becomes weakly
    // reachable. This is before finalization or garbage collection has actually happened.
    var ref: KeyedWeakReference?
    do {
      ref = queue.poll() as KeyedWeakReference?
      if (ref != null) {
        watchedObjects.remove(ref.key)
      }
    } while (ref != null)
    }
    
    KeyedWeakReference
    class KeyedWeakReference(
      referent: Any,
      val key: String,
      val description: String,
      val watchUptimeMillis: Long,
      referenceQueue: ReferenceQueue<Any>
      ) : WeakReference<Any>(
      referent, referenceQueue
      )
    
    log
    Watching instance of com.mthq.viewlib.maintab.MainTabActivity 
    (com.mthq.viewlib.maintab.MainTabActivity received Activity#onDestroy()     
    callback) with key 89224b7d-3280-45c8-bdfc-9a9ebeb601e7
    

    leakcanary的缺陷:

    leakcanary缺点

    koom原理

    1、监控机制
    2、Dump内存镜像:
       内存镜像的工作原理与硬盘的[热备份](https://baike.baidu.com/item/%E7%83%AD%E5%A4%87%E4%BB%BD/8862202)类似,内存镜像是将内存数据做两个拷贝,分别放在主内存和镜像内存中
    
       dump hprof 可分析的文件
    
       KOOM高性能dump:KOOM利用 Linux 的Copy-on-write机制(COW),fork子进程dump内存镜像
    
       fork成功以后,父进程立刻恢复虚拟机运行,子进程dump内存镜像期间不会受到父进程数据变动的影响
    
       COW机制:写时复制
    
       fork()会创建一个子进程,子进程的是父进程的副本;
       exec()重新装载程序,清空数据;
    
       一般的fork()会直接将父进程的数据拷贝到子进程中,拷贝完之后,会执行exec(),父进程和子进程之间的数据段和堆栈是相互独立的
    
       为了节省fork子进程的内存消耗和耗时,fork出的子进程并不会copy父进程的内存,而是和父进程共享内存空间,父子进程只在发生内存写入操作时,系统才会分配新的内存为写入方保留单独的拷贝。
    
       进程保留了fork瞬间时父进程的内存镜像,且后续父进程对内存的修改不会影响子进程。
    
       Copy-on-write的fork创建出的子进程,与父进程共享内存空间。既保留了镜像数据,同时子进程dump的过程也不会影响主进程执行**
    
       暂停虚拟机需要调系统库,但谷歌从Android 7.0开始对调用系统库做了限制,基于此前提,快手自研了kwai-linker组件,绕过了这一限制
    
      3、解析流程
    
       不同的Detector有不同的isLeak策略
       解析性能优化
       KOOM没有采用LeakCanary1.0版本的HAHA解析引擎,使用HAHA解析过程中非常容易OOM,且解析速度极慢。LeakCanary2.0版本使用Shark新版解析引擎,KOOM基于Shark引擎进行解析。
    
       Total:KOOM利用Linux Copy-on-write机制fork子进程dump大大提高了dump效率。 内存阈值检测方式,将对象是否泄漏的判断延迟到了解析时,避免传统的频繁主动gc**
    
       [https://blog.csdn.net/Kwai_tech/article/details/107964806](https://blog.csdn.net/Kwai_tech/article/details/107964806)

    相关文章

      网友评论

          本文标题:线上内存泄漏工具Koom

          本文链接:https://www.haomeiwen.com/subject/teuqtrtx.html