传送门
Spark实战系列之一--Spark是什么
Spark实战系列之二--什么是RDD以及RDD的常用API
Spark实战系列之三--RDD编程基础上
Spark实战系列之四--RDD编程基础下
Spark实战系列之五--键值对RDD
Spark实战系列之六--数据读写
Spark实战系列之七--综合案例
Spark基础系列之八--Spark SQL是什么
Spark基础系列之九--使用Spark SQL读写数据库
传送门
一、文件数据读写
1)本地文件系统的数据读写
//从文件中读取数据创建RDD
val textFile = sc.textFile("file:///usr/local/spark/mycode/wordcount/word.txt")
//把RDD写入到文本文件中
textFile .saveAsTextFile("file:///usr/local/spark/mycode/wordcount/writeback")
2)分布式文件系统的数据读写
//从分布式文件系统HDFS中读取数据
val textFile = sc.textFile("hdfs://localhost:9000/user/hadoop/word.txt")
val textFile = sc.textFile("/user/hadoop/word.txt")
val textFile = sc.textFile("word.txt")
//把RDD写入到HDFS中
textFile .saveAsTextFile("writeback")
3)JSON文件的数据读写
- JSON(JavaScript Object Notation)是一种轻量级的数据交换格式
//把本地people.json文件加载到RDD中
val jsonStr = sc.textFile("file:///usr/local/spark/mycode/wordcount/people.json")
jsonStr.foreach(println)
二、读写Hbase数据
- 1)创建一个Hbase表并导入数据
- 2)配置Spark(把Hbase的lib目录下的jar文件拷贝到Spark中)
- 3)编写程序读取Hbase数据(如果要让Spark读取Hbase,就需要使用SparkContext提供的newAPIHadoopRDD这个API将表的内容以RDD的形式加载到Spark中,就如下面代码import部分)
//读取Hbase数据
import org.apache.hadoop.conf.Configuration
import org.apache.hadoop.hbase._
import org.apache.hadoop.hbase.client._
import org.apache.hadoop.hbase.mapreduce.TableInputFormat
import org.apache.hadoop.hbase.util.Bytes
import org.apache.spark.SparkContext
import org.apache.spark.SparkContext._
import org.apache.spark.SparkConf
object SparkOperateHBase {
def main(args: Array[String]) {
val conf = HBaseConfiguration.create()
val sc = new SparkContext(new SparkConf().setAppName("SparkWriteHBase").setMaster("local"))
//设置查询的表名
conf.set(TableInputFormat.INPUT_TABLE, "student")
val stuRDD = sc.newAPIHadoopRDD(conf, classOf[TableInputFormat],
classOf[org.apache.hadoop.hbase.io.ImmutableBytesWritable],
classOf[org.apache.hadoop.hbase.client.Result])
val count = stuRDD.count()
println("Students RDD Count:" + count)
stuRDD.cache()
//遍历输出
stuRDD.foreach({ case (_,result) =>
val key = Bytes.toString(result.getRow)
val name = Bytes.toString(result.getValue("info".getBytes,"name".getBytes))
val gender = Bytes.toString(result.getValue("info".getBytes,"gender".getBytes))
val age = Bytes.toString(result.getValue("info".getBytes,"age".getBytes))
println("Row key:"+key+" Name:"+name+" Gender:"+gender+" Age:"+age)
})
}
}
//向hbase写入数据
import org.apache.hadoop.hbase.HBaseConfiguration
import org.apache.hadoop.hbase.mapreduce.TableOutputFormat
import org.apache.spark._
import org.apache.hadoop.mapreduce.Job
import org.apache.hadoop.hbase.io.ImmutableBytesWritable
import org.apache.hadoop.hbase.client.Result
import org.apache.hadoop.hbase.client.Put
import org.apache.hadoop.hbase.util.Bytes
object SparkWriteHBase {
def main(args: Array[String]): Unit = {
val sparkConf = new SparkConf().setAppName("SparkWriteHBase").setMaster("local")
val sc = new SparkContext(sparkConf)
val tablename = "student"
sc.hadoopConfiguration.set(TableOutputFormat.OUTPUT_TABLE, tablename)
val job = new Job(sc.hadoopConfiguration)
job.setOutputKeyClass(classOf[ImmutableBytesWritable])
job.setOutputValueClass(classOf[Result])
job.setOutputFormatClass(classOf[TableOutputFormat[ImmutableBytesWritable]])
val indataRDD = sc.makeRDD(Array("3,Rongcheng,M,26","4,Guanhua,M,27")) //构建两行记录
val rdd = indataRDD.map(_.split(',')).map{arr=>{
val put = new Put(Bytes.toBytes(arr(0))) //行健的值
put.add(Bytes.toBytes("info"),Bytes.toBytes("name"),Bytes.toBytes(arr(1))) //info:name列的值
put.add(Bytes.toBytes("info"),Bytes.toBytes("gender"),Bytes.toBytes(arr(2))) //info:gender列的值
put.add(Bytes.toBytes("info"),Bytes.toBytes("age"),Bytes.toBytes(arr(3).toInt)) //info:age列的值
(new ImmutableBytesWritable, put)
}}
rdd.saveAsNewAPIHadoopDataset(job.getConfiguration())
}
}
网友评论