美文网首页
深入浅出Handler内部原理

深入浅出Handler内部原理

作者: Felix_lin | 来源:发表于2018-11-24 18:14 被阅读18次

    Handler作为Android应用层开发,进程通信一大重点,可以说是使用最频繁的一个机制,不管是IntentService,ThreadHandler都绕不开它。本文详解Handler机制的内部源码

    深入剖析Handler,没有看错,比别人更深更精准!

    看本文可以回答你这几个问题:

    1. UI线程的Looper在哪里创建?

    2. MessageQueue真的是个队列吗?

    3. 延迟处理机制的原理?

    4. Handler中的Message同步和MessageQueue同步?
      @[toc]

    一、Handler介绍

    Handler在Android os包下,当我们创建Handler时,它会绑定一个线程,并且创建一个消息队列,通过发送Message或者Runnable对象到队列并轮询取出,实现关联。
    我们常用的Handler功能是,定时执行Runnable或者处理不同线程通信的问题,比如UI线程和子线程等。
    由此可见Handler内部机制中的几大元素:Handler,Message,MessageQueue,Looper,ThreadLocal等,接下来,分别查看它的内部源码。


    image

    二、Handler源码剖析

    Handler作为封装对外的处理器,我们来看看它对外的接口内部是做了哪些操作。

    1. Handler构造函数:

    它的构造函数,我归纳为三种方式,分别是:
    1.传入自定义Looper对象,
    2.继承Handler实现Callback接口模式,
    3.默认创建的Looper模式,
    其中2,3是我们常用的,当然1和2也能同时使用,callback接口中实现handleMessage,用于我们自定义Handler是实现回调用的。还有个被hide隐藏的传参,async是否同步,默认是不同步,且不支持设置同步模式。

    可以传入自定义的Looper,Callback接口

    public Handler(Looper looper, Callback callback, boolean async) {
        mLooper = looper;
        mQueue = looper.mQueue;
        mCallback = callback;
        mAsynchronous = async;
    }
    

    常规的构造方法如下:

    • 其中FIND_POTENTIAL_LEAKS标签是检查“继承类是否为非静态内部类”标签,我们知道,非静态内部类持有对象,容易导致内存泄漏的问题,可以查看我的《Android内存优化分析篇》

    • mAsynchronous可以看到一直是false

         public Handler(Callback callback, boolean async) {
            if (FIND_POTENTIAL_LEAKS) {
                final Class<? extends Handler> klass = getClass();
                if ((klass.isAnonymousClass() || klass.isMemberClass() || klass.isLocalClass()) &&
                        (klass.getModifiers() & Modifier.STATIC) == 0) {
                    Log.w(TAG, "The following Handler class should be static or leaks might occur: " +
                        klass.getCanonicalName());
                }
            }
      
      
            mLooper = Looper.myLooper();
            if (mLooper == null) {
                throw new RuntimeException(
                    "Can't create handler inside thread that has not called Looper.prepare()");
            }
            mQueue = mLooper.mQueue;
            mCallback = callback;
            mAsynchronous = async;
        }
      

    2. 创建Looper对象和mQueue消息队列

    由上构造函数中调用Looper.myLooper();创建了Looper对象,并取用了新创建Looper对象内部的mQueue队列,详解下Looper分析

    3. sendMessage

    • 其中sendEmptyMessage通过obtion新获取了一个Message对象

        public final boolean sendEmptyMessageDelayed(int what, long delayMillis) {
            Message msg = Message.obtain();
            msg.what = what;
            return sendMessageDelayed(msg, delayMillis);
        }
      
    • 发送消息:sendMessageDelayed--->sendMessageAtTime--->enqueueMessage

    • 注意到,在调用sendMessageAtTime时,传入的时间值: 系统时钟+delayMillis

    • 其中将 msg.target标记为当前Handler对象

    • 最终调用了MessageQueue的enqueueMessage,看后面MessageQueue分析

        //----------1
        public final boolean sendMessage(Message msg)
        {
            return sendMessageDelayed(msg, 0);
        }
        //----------2
         public final boolean sendMessageDelayed(Message msg, long delayMillis)
        {
            if (delayMillis < 0) {
                delayMillis = 0;
            }
            return sendMessageAtTime(msg, SystemClock.uptimeMillis() + delayMillis);
        }
        //---------3
        public boolean sendMessageAtTime(Message msg, long uptimeMillis) {
            MessageQueue queue = mQueue;
            if (queue == null) {
                RuntimeException e = new RuntimeException(
                        this + " sendMessageAtTime() called with no mQueue");
                Log.w("Looper", e.getMessage(), e);
                return false;
            }
            return enqueueMessage(queue, msg, uptimeMillis);
        }
        //----------4
        private boolean enqueueMessage(MessageQueue queue, Message msg, long uptimeMillis) {
            msg.target = this;
            if (mAsynchronous) {
                msg.setAsynchronous(true);
            }
            return queue.enqueueMessage(msg, uptimeMillis);
        }
      

    4. removeMessages

    从队列删除

    5. post(Runnable r)

    • 在getPostMessage中讲Runnable封装成了Message对象

        public final boolean post(Runnable r)
        {
           return  sendMessageDelayed(getPostMessage(r), 0);
        }
      
         private static Message getPostMessage(Runnable r) {
            Message m = Message.obtain();
            m.callback = r;
            return m;
        }
      

    6. dispatchMessage和handlerMessage

    • 我们看到dispatchMessage调用了callback和handlerMessage分发Message结果

    • 那么,前面我们看到了经常调用的sendMessage,那么回调是在什么时候调用的呢?

    • 让我们接下来一起看看Looper类吧。

        public void dispatchMessage(Message msg) {
            if (msg.callback != null) {
                handleCallback(msg);
            } else {
                if (mCallback != null) {
                    if (mCallback.handleMessage(msg)) {
                        return;
                    }
                }
                handleMessage(msg);
            }
        }
      
         public void handleMessage(Message msg) {}
      

    三、Looper源码剖析

    看looper做了什么,首先看mylooper方法,还记得吗,在Handler初始化时创建Looper对象调用的方法

    1. myLooper方法

    • 调用sThreadLocal取出一个looper对象

        public static @Nullable Looper myLooper() {
                return sThreadLocal.get();
          }
      
        // sThreadLocal.get() will return null unless you've called prepare().
        static final ThreadLocal<Looper> sThreadLocal = new ThreadLocal<Looper>();
      

    2. Looper.prepare()创建对象

    • 上面看到mylooper从sThreadLocal取出,但是什么时候存的呢,looper又是如何创建?

    • 由下看出Looper通过prepare创建并存入sThreadLocal,在构造同时创建MessageQueue

    • 标记成员mThread为当前线程

    • quitAllowed标识能否安全退出

        public static void prepare() {
                prepare(true);
          }
      
        private static void prepare(boolean quitAllowed) {
            if (sThreadLocal.get() != null) {
                throw new RuntimeException("Only one Looper may be created per thread");
            }
            sThreadLocal.set(new Looper(quitAllowed));
        }
      
        private Looper(boolean quitAllowed) {
            mQueue = new MessageQueue(quitAllowed);
            mThread = Thread.currentThread();
        }
      

    3. UI线程调用Handler,Looper怎么创建

    • prepareMainLooper:在当前线程初始化looper,在ActivityThread调用,也就是我们创建Activity时已经创建了Looper了

    • prepare(false):由于在ActivityThread创建,是不能安全退出的

        /**
         * Initialize the current thread as a looper, marking it as an
         * application's main looper. The main looper for your application
         * is created by the Android environment, so you should never need
         * to call this function yourself.  See also: {@link #prepare()}
         */
        public static void prepareMainLooper() {
            prepare(false);
            synchronized (Looper.class) {
                if (sMainLooper != null) {
                    throw new IllegalStateException("The main Looper has already been prepared.");
                }
                sMainLooper = myLooper();
            }
        }
      
         //-------->ActivityThread: Main:
         public static void main(String[] args) {
      
            ---
      
            Looper.prepareMainLooper();
      
            ActivityThread thread = new ActivityThread();
            thread.attach(false);
      
            if (sMainThreadHandler == null) {
                sMainThreadHandler = thread.getHandler();
            }
      
            if (false) {
                Looper.myLooper().setMessageLogging(new
                        LogPrinter(Log.DEBUG, "ActivityThread"));
            }
      
            // End of event ActivityThreadMain.
            Trace.traceEnd(Trace.TRACE_TAG_ACTIVITY_MANAGER);
            Looper.loop();
        }
      

    4. Looper.loop()

    • UI线程创建Looper,上ActivityThread中,在调用prepare后接着调用Looper.loop
    • loop通过 for (;;)死循环,从queue中取下一则消息
    • 其中 msg.target.dispatchMessage(msg);,在上面Handler中将handler对象传给了looper
    •   public static void loop() {
            final Looper me = myLooper();
            if (me == null) {
                throw new RuntimeException("No Looper; Looper.prepare() wasn't called on this thread.");
            }
            final MessageQueue queue = me.mQueue;
      
            //--------------确保同一进程
            Binder.clearCallingIdentity();
            final long ident = Binder.clearCallingIdentity();
      
            for (;;) {
                Message msg = queue.next(); // might block
                if (msg == null) {
                    // No message indicates that the message queue is quitting.
                    return;
                }
      
                //--------------打印日志
                final Printer logging = me.mLogging;
                if (logging != null) {
                    logging.println(">>>>> Dispatching to " + msg.target + " " +
                            msg.callback + ": " + msg.what);
                }
                
                //--------------从队列中获取分发消息延时
                final long slowDispatchThresholdMs = me.mSlowDispatchThresholdMs;
                
                //--------------Trace标记,用于记录message分发完成
                final long traceTag = me.mTraceTag;
                if (traceTag != 0 && Trace.isTagEnabled(traceTag)) {
                    Trace.traceBegin(traceTag, msg.target.getTraceName(msg));
                }
                final long start = (slowDispatchThresholdMs == 0) ? 0 : SystemClock.uptimeMillis();
                final long end;
                try {
                    msg.target.dispatchMessage(msg);
                    end = (slowDispatchThresholdMs == 0) ? 0 : SystemClock.uptimeMillis();
                } finally {
                    if (traceTag != 0) {
                        Trace.traceEnd(traceTag);
                    }
                }
                if (slowDispatchThresholdMs > 0) {
                    final long time = end - start;
                    if (time > slowDispatchThresholdMs) {
                        Slog.w(TAG, "Dispatch took " + time + "ms on "
                                + Thread.currentThread().getName() + ", h=" +
                                msg.target + " cb=" + msg.callback + " msg=" + msg.what);
                    }
                }
      
                if (logging != null) {
                    logging.println("<<<<< Finished to " + msg.target + " " + msg.callback);
                }
      
                // Make sure that during the course of dispatching the
                // identity of the thread wasn't corrupted.
                final long newIdent = Binder.clearCallingIdentity();
                if (ident != newIdent) {
                    Log.wtf(TAG, "Thread identity changed from 0x"
                            + Long.toHexString(ident) + " to 0x"
                            + Long.toHexString(newIdent) + " while dispatching to "
                            + msg.target.getClass().getName() + " "
                            + msg.callback + " what=" + msg.what);
                }
                
                //--------------充值message对象参数
                msg.recycleUnchecked();
            }
        }
      

    四、MessageQueue源码剖析

    MessageQueue主要分析插入和取出,由下enqueueMessage插入方法看出,它名字带着Queue,但其实并不是,它实际是个单链表结构,通过native操作指针,去进行msg的读取操作。当然,这更加快捷的实施取出,删除和插入操作。

    1. enqueueMessage

    • msg.markInUse();标记当前msg正在使用
    • 其中mMessages是可以理解为即将执行的Message对象
    • 将当前mMessages新传入的Msg设置触发时间对比,如果新的Msg设置时间早,则将2者位置对调,将新的排前面,与之对比的mMessages排到其后。反之,则与mMessages后一个对比时间,依次类比,插入到队列中
    • 其中,如果msg事Asynchronous同步的,那么它只能等到上一个同步msg执行完,才能被唤醒执行。
         boolean enqueueMessage(Message msg, long when) {
            ...
    
            synchronized (this) {
                if (mQuitting) {
                    //------------->抛出一个IllegalStateException
                    Log.w(TAG, e.getMessage(), e);
                    msg.recycle();
                    return false;
                }
                //------------->标记当前msg正在使用
                msg.markInUse();
                msg.when = when;
                Message p = mMessages;
                boolean needWake;
                if (p == null || when == 0 || when < p.when) {
                    // New head, wake up the event queue if blocked.
                    msg.next = p;
                    mMessages = msg;
                    needWake = mBlocked;
                } else {
                    // Inserted within the middle of the queue.  Usually we don't have to wake
                    // up the event queue unless there is a barrier at the head of the queue
                    // and the message is the earliest asynchronous message in the queue.
                    needWake = mBlocked && p.target == null && msg.isAsynchronous();
                    Message prev;
                    for (;;) {
                        prev = p;
                        p = p.next;
                        if (p == null || when < p.when) {
                            break;
                        }
                        if (needWake && p.isAsynchronous()) {
                            needWake = false;
                        }
                    }
                    msg.next = p; // invariant: p == prev.next
                    prev.next = msg;
                }
    
                // We can assume mPtr != 0 because mQuitting is false.
                if (needWake) {
                    nativeWake(mPtr);
                }
            }
            return true;
        }
    

    2. next取出

    • 可以看出enqueueMessage和next都是同步的

    • 通过循环,把mMessages当前msg

    • 比较当前时间和Msg标记时间,如果早的话就设置一段指针查找超时时间

    • 将msg标记为使用,并取出消息返回

        Message next() {
      
            //----->当消息轮询退出时,mPtr指针找不到地址,返回空取不到对象
            final long ptr = mPtr;
            if (ptr == 0) {
                return null;
            }
            //----->同步指针查找的时间,根据超时时间计算,比如当前未到msg的时间,指针会在一段计算好的超时时间后去查询
            int pendingIdleHandlerCount = -1; // -1 only during first iteration
            int nextPollTimeoutMillis = 0;
            for (;;) {
                if (nextPollTimeoutMillis != 0) {
                    Binder.flushPendingCommands();
                }
      
                nativePollOnce(ptr, nextPollTimeoutMillis);
      
                synchronized (this) {
                    // Try to retrieve the next message.  Return if found.
                    final long now = SystemClock.uptimeMillis();
                    Message prevMsg = null;
                    Message msg = mMessages;
                        
                    //----->如果target为null,寻找下一个带“同步”标签的msg
      
                    if (msg != null && msg.target == null) {
                        // Stalled by a barrier.  Find the next asynchronous message in the queue.
                        do {
                            prevMsg = msg;
                            msg = msg.next;
                        } while (msg != null && !msg.isAsynchronous());
                    }
                    if (msg != null) {
      
                        //----->比较当前时间和Msg标记时间,如果早的话就设置一段指针查找超时时间
      
                        if (now < msg.when) {
                            // Next message is not ready.  Set a timeout to wake up when it is ready.
                            nextPollTimeoutMillis = (int) Math.min(msg.when - now, Integer.MAX_VALUE);
                        } else {
                            // Got a message.
                            mBlocked = false;
                            if (prevMsg != null) {
                                prevMsg.next = msg.next;
                            } else {
                                mMessages = msg.next;
                            }
                            msg.next = null;
                            if (DEBUG) Log.v(TAG, "Returning message: " + msg);
                            msg.markInUse();
                            return msg;
                        }
                    } else {
                        // No more messages.
                        nextPollTimeoutMillis = -1;
                    }
      
                    // Process the quit message now that all pending messages have been handled.
                    if (mQuitting) {
                        dispose();
                        return null;
                    }
      
                    // If first time idle, then get the number of idlers to run.
                    // Idle handles only run if the queue is empty or if the first message
                    // in the queue (possibly a barrier) is due to be handled in the future.
                    if (pendingIdleHandlerCount < 0
                            && (mMessages == null || now < mMessages.when)) {
                        pendingIdleHandlerCount = mIdleHandlers.size();
                    }
                    if (pendingIdleHandlerCount <= 0) {
                        // No idle handlers to run.  Loop and wait some more.
                        mBlocked = true;
                        continue;
                    }
      
                    if (mPendingIdleHandlers == null) {
                        mPendingIdleHandlers = new IdleHandler[Math.max(pendingIdleHandlerCount, 4)];
                    }
                    mPendingIdleHandlers = mIdleHandlers.toArray(mPendingIdleHandlers);
                }
      
                // Run the idle handlers.
                // We only ever reach this code block during the first iteration.
                for (int i = 0; i < pendingIdleHandlerCount; i++) {
                    final IdleHandler idler = mPendingIdleHandlers[i];
                    mPendingIdleHandlers[i] = null; // release the reference to the handler
      
                    boolean keep = false;
                    try {
                        keep = idler.queueIdle();
                    } catch (Throwable t) {
                        Log.wtf(TAG, "IdleHandler threw exception", t);
                    }
      
                    if (!keep) {
                        synchronized (this) {
                            mIdleHandlers.remove(idler);
                        }
                    }
                }
      
                // Reset the idle handler count to 0 so we do not run them again.
                pendingIdleHandlerCount = 0;
      
                // While calling an idle handler, a new message could have been delivered
                // so go back and look again for a pending message without waiting.
                nextPollTimeoutMillis = 0;
            }
        }
      

    3. quit操作

    • 前面标记是否能安全退出,否则报错
    • 退出后唤醒指针,接触msg的锁
         void quit(boolean safe) {
                if (!mQuitAllowed) {
                    throw new IllegalStateException("Main thread not allowed to quit.");
                }
        
                synchronized (this) {
                    if (mQuitting) {
                        return;
                    }
                    mQuitting = true;
        
                    if (safe) {
                        removeAllFutureMessagesLocked();
                    } else {
                        removeAllMessagesLocked();
                    }
        
                    // We can assume mPtr != 0 because mQuitting was previously false.
                    nativeWake(mPtr);
                }
            }
    

    五、Message源码剖析

    Message主要是一个Parcelable序列号对象,封装了不分信息和操作,它构造了一个对象池,这也是为什么我们一直发送msg,不会内存爆炸的原因,来看看实现

    1. obtain()

    • 维持一个大小为50的同步线程池
    • 这里可以看出Message是个链表结构,obtain将sPool取出return Message,并对象池下一个msg标记为sPool
        private static final int MAX_POOL_SIZE = 50;
        
        ...
    
        public static Message obtain() {
            synchronized (sPoolSync) {
                if (sPool != null) {
                    Message m = sPool;
                    sPool = m.next;
                    m.next = null;
                    m.flags = 0; // clear in-use flag
                    sPoolSize--;
                    return m;
                }
            }
            return new Message();
        }
    

    2.recycleUnchecked 回收消息

    • 回收初始化当前msg
    • 如果当前对象池大小小于MAX_POOL_SIZE,则将初始化后的msg放到表头sPool,sPoolSize++。
    • 由此可以看出,如果每次new新的Message传入Handler,必然增加内存消耗,通过obtain服用才是正确的做法
        /**
         * Recycles a Message that may be in-use.
         * Used internally by the MessageQueue and Looper when disposing of queued Messages.
         */
        void recycleUnchecked() {
            // Mark the message as in use while it remains in the recycled object pool.
            // Clear out all other details.
            flags = FLAG_IN_USE;
            what = 0;
            arg1 = 0;
            arg2 = 0;
            obj = null;
            replyTo = null;
            sendingUid = -1;
            when = 0;
            target = null;
            callback = null;
            data = null;
    
            synchronized (sPoolSync) {
                if (sPoolSize < MAX_POOL_SIZE) {
                    next = sPool;
                    sPool = this;
                    sPoolSize++;
                }
            }
        }
    

    3. Message标签:是否使用,同步标签

    public void setAsynchronous(boolean async) {
        if (async) {
            flags |= FLAG_ASYNCHRONOUS;
        } else {
            flags &= ~FLAG_ASYNCHRONOUS;
        }
    }
    
    /*package*/ boolean isInUse() {
        return ((flags & FLAG_IN_USE) == FLAG_IN_USE);
    }
    
    /*package*/ void markInUse() {
        flags |= FLAG_IN_USE;
    } 
    

    六、总结

    废了小半天功夫,整理了对Handler源码的阅读总结,虽然东西很多也很繁琐,不过如果认真去看,是不是发现越深入就越有趣,也越发发现Android源码的严谨性。平常至少简单一用,只要深入了解才能更好地去使用它理解它,比如Message对象池的应用,这不就是享元模式吗,希望大家都能有所体悟。

    相关文章

      网友评论

          本文标题:深入浅出Handler内部原理

          本文链接:https://www.haomeiwen.com/subject/qfpyqqtx.html