美文网首页
2022-04-22 panda dataframe 存储压缩

2022-04-22 panda dataframe 存储压缩

作者: 破阵子沙场秋点兵 | 来源:发表于2022-04-22 11:18 被阅读0次
    def reduce_mem_usage(df, verbose=True):
        start_mem = df.memory_usage().sum() / 1024**2
        numerics = ['int16', 'int32', 'int64', 'float16', 'float32', 'float64']
    
        for col in df.columns:
            col_type = df[col].dtypes
            if col_type in numerics:
                c_min = df[col].min()
                c_max = df[col].max()
                if str(col_type)[:3] == 'int':
                    if c_min > np.iinfo(np.int8).min and c_max < np.iinfo(np.int8).max:
                        df[col] = df[col].astype(np.int8)
                    elif c_min > np.iinfo(np.int16).min and c_max < np.iinfo(np.int16).max:
                        df[col] = df[col].astype(np.int16)
                    elif c_min > np.iinfo(np.int32).min and c_max < np.iinfo(np.int32).max:
                        df[col] = df[col].astype(np.int32)
                    elif c_min > np.iinfo(np.int64).min and c_max < np.iinfo(np.int64).max:
                        df[col] = df[col].astype(np.int64)
                else:
                    if c_min > np.finfo(np.float16).min and c_max < np.finfo(np.float16).max:
                        df[col] = df[col].astype(np.float16)
                    elif c_min > np.finfo(np.float32).min and c_max < np.finfo(np.float32).max:
                        df[col] = df[col].astype(np.float32)
                    else:
                        df[col] = df[col].astype(np.float64)
                        
        end_mem = df.memory_usage().sum() / 1024**2
        print('Memory usage after optimization is: {:.2f} MB'.format(end_mem))
        print('Decreased by {:.1f}%'.format(100 * (start_mem - end_mem) / start_mem))
        return df
    

    相关文章

      网友评论

          本文标题:2022-04-22 panda dataframe 存储压缩

          本文链接:https://www.haomeiwen.com/subject/qfzgertx.html