Android消息机制分析

作者: 韩sang | 来源:发表于2016-07-29 15:45 被阅读54次

    异步消息处理线程

    对于普通的线程而言,执行完run()方法内的代码后线程就结束。而异步消息处理线程是指,线程启动后会进入一个无限循环体之中,每循环一次,从其内部的消息队列中取出一个消息,并回调相应的消息处理函数,执行完一个消息后继续循环。如果消息列表为空,线程会暂停,直到消息队列中有新的消息。

    异步线程的实现思路

    • 每个异步线程内部包含一个消息队列,队列中的消息一般采用排队机制,先到达的消息会先处理。
    • 线程的执行体中使用while(true)进行无限循环,循环体中从消息队列中取出消息,并根据消息的来源,回调响应的消息处理函数。
    • 其他外部线程可以向本线程的消息队列发送消息,消息队列内部的读写操作必须进行加锁,不能同时进行读/写操作。

    Android 消息机制

    Android消息机制主要指Handler的运行机制,Handler的运行机制需要底层的MessageQueue和Looper的支持。

    ThreadLocal

    ThreadLocal 是一个线程内部存储类,通过它可以在指定的线程中存储数据,同样只能在指定的线程里获取存储的数据,其他的线程无法获取。例如对于Handler来说,它需要获取当前线程的Looper,Looper的作用域就是线程中,并且不同的线程有不同的Looper。

    存储数据
    <pre>
    public void set(T value) {
    Thread currentThread = Thread.currentThread();
    Values values = values(currentThread);
    if (values == null) {
    values = initializeValues(currentThread);
    }
    values.put(this, value);
    }

    Values values(Thread current) {
    return current.localValues;
    }

    Values initializeValues(Thread current) {
    return current.localValues = new Values();
    }
    </pre>

    意思是先去获取当前线程的Values,null话会新建一个。这里这个Values是Thread的一个内部类,这个内部类里有一个数组
    <pre>
    /**
    * Map entries. Contains alternating keys (ThreadLocal) and values.
    * The length is always a power of 2.
    */
    private Object[] table;
    </pre>
    注释说存储交替的key(ThreadLocal的引用)和values,这个数组的长度始终是2的幂。
    然后是values.put
    <pre>
    void put(ThreadLocal<?> key, Object value) {
    cleanUp();

            // Keep track of first tombstone. That's where we want to go back
            // and add an entry if necessary.
            int firstTombstone = -1;
    
            for (int index = key.hash & mask;; index = next(index)) {
                Object k = table[index];
    
                if (k == key.reference) {
                    // Replace existing entry.
                    table[index + 1] = value;
                    return;
                }
    
                if (k == null) {
                    if (firstTombstone == -1) {
                        // Fill in null slot.
                        table[index] = key.reference;
                        table[index + 1] = value;
                        size++;
                        return;
                    }
    
                    // Go back and replace first tombstone.
                    table[firstTombstone] = key.reference;
                    table[firstTombstone + 1] = value;
                    tombstones--;
                    size++;
                    return;
                }
    
                // Remember first tombstone.
                if (firstTombstone == -1 && k == TOMBSTONE) {
                    firstTombstone = index;
                }
            }
        }
    

    </pre>

    这里所做的操作验证了刚才的注释,put时ThreadLocal reference的位置始终在value的前一个,这样就把这种键值对交替的存在Thread.values里的Object[] table这个数组里。这样一方面也说明了一个Thread里可以存多个ThreadLocal 和 Value的组合。

    获取数据

    <pre>
    public T get() {
    // Optimized for the fast path.
    Thread currentThread = Thread.currentThread();
    Values values = values(currentThread);
    if (values != null) {
    Object[] table = values.table;
    int index = hash & values.mask;
    if (this.reference == table[index]) {
    return (T) table[index + 1];
    }
    } else {
    values = initializeValues(currentThread);
    }

        return (T) values.getAfterMiss(this);
    }
    

    </pre>

    和存相反,这里先通过当前ThreadLocal的引用获取当前ThreadLocal在table数组的位置,那么他的下一个位置就是之前存入的数据的位置,这样就可以获取数据了。

    总结一下:一个Thread里的Values包含一个Obj数组,这个数组的存取是通过ThreadLocal这个类,存时用ThreadLocal的引用作为key,要存的数据做value,取同样,多个ThreadLocal存如同一个Thread的Values的obj数组,获取数据互不影响。验证了ThreadLocal的存取操作仅限于线程里。

    MessageQueue

    MessageQueue消息队列主要包含两个操作:插入和读取。

    插入:
    <pre>
    boolean enqueueMessage(Message msg, long when) {
    if (msg.target == null) {
    throw new IllegalArgumentException("Message must have a target.");
    }
    if (msg.isInUse()) {
    throw new IllegalStateException(msg + " This message is already in use.");
    }

        synchronized (this) {
            if (mQuitting) {
                IllegalStateException e = new IllegalStateException(
                        msg.target + " sending message to a Handler on a dead thread");
                Log.w("MessageQueue", e.getMessage(), e);
                msg.recycle();
                return false;
            }
    
            msg.markInUse();
            msg.when = when;
            Message p = mMessages;
            boolean needWake;
            if (p == null || when == 0 || when < p.when) {
                // New head, wake up the event queue if blocked.
                msg.next = p;
                mMessages = msg;
                needWake = mBlocked;
            } else {
                // Inserted within the middle of the queue.  Usually we don't have to wake
                // up the event queue unless there is a barrier at the head of the queue
                // and the message is the earliest asynchronous message in the queue.
                needWake = mBlocked && p.target == null && msg.isAsynchronous();
                Message prev;
                for (;;) {
                    prev = p;
                    p = p.next;
                    if (p == null || when < p.when) {
                        break;
                    }
                    if (needWake && p.isAsynchronous()) {
                        needWake = false;
                    }
                }
                msg.next = p; // invariant: p == prev.next
                prev.next = msg;
            }
    
            // We can assume mPtr != 0 because mQuitting is false.
            if (needWake) {
                nativeWake(mPtr);
            }
        }
        return true;
    }
    

    </pre>

    这个方法事件就是根据时间做入队的操作。

    在hanlder里发送消息,最后都走了这个方法:
    <pre>
    public boolean sendMessageAtTime(Message msg, long uptimeMillis)
    {
    boolean sent = false;
    MessageQueue queue = mQueue;
    if (queue != null) {
    msg.target = this;
    sent = queue.enqueueMessage(msg, uptimeMillis);
    }
    else {
    RuntimeException e = new RuntimeException(
    this + " sendMessageAtTime() called with no mQueue");
    Log.w("Looper", e.getMessage(), e);
    }
    return sent;
    }
    </pre>
    可以看见这个方法都是调用了MessageQueue的enqueueMessage方法,其中msg参数就是我们发送的Message对象,而uptimeMillis参数则表示发送消息的时间,它的值等于自系统开机到当前时间的毫秒数再加上延迟时间,如果你调用的不是sendMessageDelayed()方法,延迟时间就为0,然后将这两个参数都传递到MessageQueue的enqueueMessage()方法中。

    然后是读取的next方法:
    <pre>
    Message next() {
    // Return here if the message loop has already quit and been disposed.
    // This can happen if the application tries to restart a looper after quit
    // which is not supported.
    final long ptr = mPtr;
    if (ptr == 0) {
    return null;
    }

        int pendingIdleHandlerCount = -1; // -1 only during first iteration
        int nextPollTimeoutMillis = 0;
        for (;;) {
            if (nextPollTimeoutMillis != 0) {
                Binder.flushPendingCommands();
            }
    
            nativePollOnce(ptr, nextPollTimeoutMillis);
    
            synchronized (this) {
                // Try to retrieve the next message.  Return if found.
                final long now = SystemClock.uptimeMillis();
                Message prevMsg = null;
                Message msg = mMessages;
                if (msg != null && msg.target == null) {
                    // Stalled by a barrier.  Find the next asynchronous message in the queue.
                    do {
                        prevMsg = msg;
                        msg = msg.next;
                    } while (msg != null && !msg.isAsynchronous());
                }
                if (msg != null) {
                    if (now < msg.when) {
                        // Next message is not ready.  Set a timeout to wake up when it is ready.
                        nextPollTimeoutMillis = (int) Math.min(msg.when - now, Integer.MAX_VALUE);
                    } else {
                        // Got a message.
                        mBlocked = false;
                        if (prevMsg != null) {
                            prevMsg.next = msg.next;
                        } else {
                            mMessages = msg.next;
                        }
                        msg.next = null;
                        if (false) Log.v("MessageQueue", "Returning message: " + msg);
                        return msg;
                    }
                } else {
                    // No more messages.
                    nextPollTimeoutMillis = -1;
                }
    
                // Process the quit message now that all pending messages have been handled.
                if (mQuitting) {
                    dispose();
                    return null;
                }
    
                // If first time idle, then get the number of idlers to run.
                // Idle handles only run if the queue is empty or if the first message
                // in the queue (possibly a barrier) is due to be handled in the future.
                if (pendingIdleHandlerCount < 0
                        && (mMessages == null || now < mMessages.when)) {
                    pendingIdleHandlerCount = mIdleHandlers.size();
                }
                if (pendingIdleHandlerCount <= 0) {
                    // No idle handlers to run.  Loop and wait some more.
                    mBlocked = true;
                    continue;
                }
    
                if (mPendingIdleHandlers == null) {
                    mPendingIdleHandlers = new IdleHandler[Math.max(pendingIdleHandlerCount, 4)];
                }
                mPendingIdleHandlers = mIdleHandlers.toArray(mPendingIdleHandlers);
            }
    
            // Run the idle handlers.
            // We only ever reach this code block during the first iteration.
            for (int i = 0; i < pendingIdleHandlerCount; i++) {
                final IdleHandler idler = mPendingIdleHandlers[i];
                mPendingIdleHandlers[i] = null; // release the reference to the handler
    
                boolean keep = false;
                try {
                    keep = idler.queueIdle();
                } catch (Throwable t) {
                    Log.wtf("MessageQueue", "IdleHandler threw exception", t);
                }
    
                if (!keep) {
                    synchronized (this) {
                        mIdleHandlers.remove(idler);
                    }
                }
            }
    
            // Reset the idle handler count to 0 so we do not run them again.
            pendingIdleHandlerCount = 0;
    
            // While calling an idle handler, a new message could have been delivered
            // so go back and look again for a pending message without waiting.
            nextPollTimeoutMillis = 0;
        }
    }
    

    </pre>
    这个方法非常的长,还调用了ndk,大体的意思就是从消息队列里不停的读Message,当前时间大于Message的when就会返回这个Message,否则一直会阻塞,跳出阻塞的条件是:
    <pre>
    if (mQuitting) {
    dispose();
    return null;
    }

    </pre>

    Looper

    Looper作用是不停地从MessageQueue中查看是否有消息,有消息就会立即处理。下面看它的两个方法。
    prepare:

    <pre>
    private static void prepare(boolean quitAllowed) {
    if (sThreadLocal.get() != null) {
    throw new RuntimeException("Only one Looper may be created per thread");
    }
    sThreadLocal.set(new Looper(quitAllowed));
    }
    </pre>

    结合ThreadLocal的分析,这个prepare的操作实际就是在当前线程中存一个Looper。

    loop:
    <pre>
    public static void loop() {
    final Looper me = myLooper();
    if (me == null) {
    throw new RuntimeException("No Looper; Looper.prepare() wasn't called on this thread.");
    }
    final MessageQueue queue = me.mQueue;

        // Make sure the identity of this thread is that of the local process,
        // and keep track of what that identity token actually is.
        Binder.clearCallingIdentity();
        final long ident = Binder.clearCallingIdentity();
    
        for (;;) {
            Message msg = queue.next(); // might block
            if (msg == null) {
                // No message indicates that the message queue is quitting.
                return;
            }
    
            // This must be in a local variable, in case a UI event sets the logger
            Printer logging = me.mLogging;
            if (logging != null) {
                logging.println(">>>>> Dispatching to " + msg.target + " " +
                        msg.callback + ": " + msg.what);
            }
    
            msg.target.dispatchMessage(msg);
    
            if (logging != null) {
                logging.println("<<<<< Finished to " + msg.target + " " + msg.callback);
            }
    
            // Make sure that during the course of dispatching the
            // identity of the thread wasn't corrupted.
            final long newIdent = Binder.clearCallingIdentity();
            if (ident != newIdent) {
                Log.wtf(TAG, "Thread identity changed from 0x"
                        + Long.toHexString(ident) + " to 0x"
                        + Long.toHexString(newIdent) + " while dispatching to "
                        + msg.target.getClass().getName() + " "
                        + msg.callback + " what=" + msg.what);
            }
    
            msg.recycleUnchecked();
        }
    }
    

    </pre>
    loop中有个死循环去调用MessgeQueue的next方法,当next返回的message为null时才会跳出死循环,结合对next分析我们知道,MessageQueue的msg为空时会一直阻塞,只有if(mQuitting)才会返回null,这时Looper也会跳出死循环,我们可以通过Loop的quit方法,这个quit方法会调用MessgeQueue的quit给mQuitting设置为true。如果这个有message,会走msg.target.dispatchMessage(msg)方法。
    我们来看一下这个target是什么进入Message类:

    <pre>
    /package/ Handler target;
    </pre>

    这个target就是hanlder。

    Handler

    <pre>
    public Handler(Callback callback, boolean async) {
    if (FIND_POTENTIAL_LEAKS) {
    final Class<? extends Handler> klass = getClass();
    if ((klass.isAnonymousClass() || klass.isMemberClass() || klass.isLocalClass()) &&
    (klass.getModifiers() & Modifier.STATIC) == 0) {
    Log.w(TAG, "The following Handler class should be static or leaks might occur: " +
    klass.getCanonicalName());
    }
    }

        mLooper = Looper.myLooper();
        if (mLooper == null) {
            throw new RuntimeException(
                "Can't create handler inside thread that has not called Looper.prepare()");
        }
        mQueue = mLooper.mQueue;
        mCallback = callback;
        mAsynchronous = async;
    }
    

    public boolean sendMessageAtTime(Message msg, long uptimeMillis) {
    MessageQueue queue = mQueue;
    if (queue == null) {
    RuntimeException e = new RuntimeException(
    this + " sendMessageAtTime() called with no mQueue");
    Log.w("Looper", e.getMessage(), e);
    return false;
    }
    return enqueueMessage(queue, msg, uptimeMillis);
    }
    public void dispatchMessage(Message msg) {
    if (msg.callback != null) {
    handleCallback(msg);
    } else {
    if (mCallback != null) {
    if (mCallback.handleMessage(msg)) {
    return;
    }
    }
    handleMessage(msg);
    }
    }
    </pre>

    看了这两个方法,我脑子已经有一个画面了:

    总结

    通过Handler发送消息时,new Hanlder时会检查当前当前线程是否有Looper,没有就会报错
    "Can't create handler inside thread that has not called Looper.prepare()");
    Looper.prepare事件是利用ThreadLocal给当前线程存一个Looper,并通过Looper.Loop获取并启动他。handler发送的消息实际最后都会调用MessageQueue的enQueue的操作,这里会按时间排序,Looper启动后会不停的读取MessgeQueue.next的msg,时间达到的Msg就会被分发,调用handler.dispatchMessage方法,这里实际就是去调用在hanlderMessage()里所编写的业务代码,这样就成功的讲代码切换到Looper.pre里赋值的线程中执行

    Tips

    另外除了发送消息之外,我们还有以下几种方法可以在子线程中进行UI操作:

    1. Handler的post()方法
    2. View的post()方法
    3. Activity的runOnUiThread()方法

    相关文章

      网友评论

        本文标题:Android消息机制分析

        本文链接:https://www.haomeiwen.com/subject/qhyzjttx.html