美文网首页
Flink-5.Flink 随机key数据倾斜

Flink-5.Flink 随机key数据倾斜

作者: 笨鸡 | 来源:发表于2022-03-09 14:36 被阅读0次
package com.ctgu.flink.project;

import org.apache.flink.api.common.functions.AggregateFunction;
import org.apache.flink.api.common.functions.RichMapFunction;
import org.apache.flink.api.common.state.ValueState;
import org.apache.flink.api.common.state.ValueStateDescriptor;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.configuration.Configuration;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.functions.KeyedProcessFunction;
import org.apache.flink.streaming.api.functions.windowing.WindowFunction;
import org.apache.flink.streaming.api.windowing.assigners.TumblingEventTimeWindows;
import org.apache.flink.streaming.api.windowing.time.Time;
import org.apache.flink.streaming.api.windowing.windows.TimeWindow;
import org.apache.flink.table.api.EnvironmentSettings;
import org.apache.flink.table.api.Schema;
import org.apache.flink.table.api.Table;
import org.apache.flink.table.api.bridge.java.StreamTableEnvironment;
import org.apache.flink.types.Row;
import org.apache.flink.util.Collector;

import java.util.Random;


public class Flink_Sql_Pv {
    public static void main(String[] args) throws Exception {

        long start = System.currentTimeMillis();

        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        env.setParallelism(8);

        EnvironmentSettings settings = EnvironmentSettings
                .newInstance()
                .inStreamingMode()
                .build();

        StreamTableEnvironment tableEnv = StreamTableEnvironment.create(env, settings);

        String createSql =
                "CREATE TABLE source " +
                        "    (" +
                        "    `userId` BIGINT," +
                        "    `itemId` BIGINT," +
                        "    `categoryId` INT," +
                        "    `behavior` STRING," +
                        "    `ts` BIGINT" +
                        "    )" +
                        "    WITH (" +
                        "       'connector'='filesystem'," +
                        "       'format'='csv'," +
                        "       'csv.field-delimiter'=','," +
                        "       'path'='data/UserBehavior.csv'" +
                        "    )";

        tableEnv.executeSql(createSql);

        String userBehavior = "select *, ts * 1000 as `timestamp` from source where behavior = 'pv'";

        Table userBehaviorTable = tableEnv.sqlQuery(userBehavior);

        DataStream<Row> rowDataStream = tableEnv.toDataStream(userBehaviorTable);

        Table source =
                tableEnv.fromDataStream(
                        rowDataStream,
                        Schema.newBuilder()
                                .columnByExpression("time_ltz", "TO_TIMESTAMP_LTZ(`timestamp`, 3)")
                                .watermark("time_ltz", "time_ltz - INTERVAL '5' SECOND")
                                .build());

        tableEnv.createTemporaryView("userBehavior", source);

        DataStream<Row> dataStream = tableEnv.toDataStream(source);

        DataStream<Tuple2<Long, Long>> sum = dataStream.filter(data -> "pv".equals(data.getField("behavior")))
                .map(new MyMapFunction())
                .keyBy(data -> data.f0)
                .window(TumblingEventTimeWindows.of(Time.hours(1)))
                .aggregate(new AverageAggregate(), new MyWindowFunction())
                .keyBy(data -> data.f0)
                .process(new MyProcessFunction());

        sum.print();

        env.execute("Table SQL");

        System.out.println("耗时: " + (System.currentTimeMillis() - start) / 1000);
    }

    private static class MyMapFunction
            extends RichMapFunction<Row, Tuple2<Integer, Long>>{

        @Override
        public Tuple2<Integer, Long> map(Row row) throws Exception {
            Random random = new Random();
            return new Tuple2<>(random.nextInt(10), 1L);
        }
    }

    private static class AverageAggregate
            implements AggregateFunction<Tuple2<Integer, Long>, Long, Long> {
        @Override
        public Long createAccumulator() {
            return 0L;
        }

        @Override
        public Long add(Tuple2<Integer, Long> integerLongTuple2, Long aLong) {
            return aLong + 1;
        }

        @Override
        public Long getResult(Long aLong) {
            return aLong;
        }

        @Override
        public Long merge(Long a, Long b) {
            return a + b;
        }
    }

    private static class MyWindowFunction
            implements WindowFunction<Long, Tuple2<Long, Long>, Integer, TimeWindow> {

        @Override
        public void apply(Integer integer,
                          TimeWindow timeWindow,
                          Iterable<Long> iterable,
                          Collector<Tuple2<Long, Long>> collector) throws Exception {
            collector.collect(new Tuple2<>(timeWindow.getEnd(), iterable.iterator().next()));
        }
    }

    private static class MyProcessFunction
            extends KeyedProcessFunction<Long, Tuple2<Long, Long>, Tuple2<Long, Long>> {

        private ValueState<Long> totalCountState;

        @Override
        public void open(Configuration parameters) throws Exception {
            totalCountState = getRuntimeContext().getState(new ValueStateDescriptor<>(
                    "total-count", Long.class, 0L));
        }

        @Override
        public void processElement(Tuple2<Long, Long> tuple2, Context context, Collector<Tuple2<Long, Long>> collector) throws Exception {
            totalCountState.update(totalCountState.value() + tuple2.f1);
            context.timerService().registerEventTimeTimer(tuple2.f0 + 1);
        }

        @Override
        public void onTimer(long timestamp, OnTimerContext ctx, Collector<Tuple2<Long, Long>> out) throws Exception {
            Long totalCount = totalCountState.value();
            out.collect(new Tuple2<>(ctx.getCurrentKey(), totalCount));
            totalCountState.clear();
        }
    }

}

相关文章

网友评论

      本文标题:Flink-5.Flink 随机key数据倾斜

      本文链接:https://www.haomeiwen.com/subject/qiptdrtx.html