美文网首页
Mysql索引优化 Mysql通过索引提升查询效率(第二棒)

Mysql索引优化 Mysql通过索引提升查询效率(第二棒)

作者: 运气爆棚lsw | 来源:发表于2022-02-16 16:01 被阅读0次

    Mysql通过索引提升查询效率

    1. 索引基本知识概览

    索引的优点

    1、大大减少了服务器需要扫描的数据量
    2、帮助服务器避免排序和临时表
    3、将随机io变成顺序io

    索引的用处

    1、快速查找匹配WHERE子句的行
    2、从consideration中消除行,如果可以在多个索引之间进行选择,mysql通常会使用找到最少行的索引
    3、如果表具有多列索引,则优化器可以使用索引的任何最左前缀来查找行
    4、当有表连接的时候,从其他表检索行数据
    5、查找特定索引列的min或max值
    6、如果排序或分组时在可用索引的最左前缀上完成的,则对表进行排序和分组
    7、在某些情况下,可以优化查询以检索值而无需查询数据行

    索引的分类

    主键索引/唯一索引/普通索引/全文索引/组合索引

    常用优化原则

    回表/覆盖索引/最左匹配/索引下推

    索引采用的数据结构

    哈希表/B+树/索引匹配方式

    create table staffs(
    id int primary key auto_increment,
    name varchar(24) not null default '' comment '姓名',
    age int not null default 0 comment '年龄',
    pos varchar(20) not null default '' comment '职位',
    add_time timestamp not null default current_timestamp comment '入职时间'
    ) charset utf8 comment '员工记录表';
    -----------alter table staffs add index idx_nap(name, age, pos);

    全值匹配

    全值匹配指的是和索引中的所有列进行匹配
    explain select * from staffs where name = 'July' and age = '23' and pos = 'dev';

    匹配最左前缀

    只匹配前面的几列
    explain select * from staffs where name = 'July' and age = '23';
    explain select * from staffs where name = 'July';

    匹配列前缀

    可以匹配某一列的值的开头部分
    explain select * from staffs where name like 'J%';
    explain select * from staffs where name like '%y';

    匹配范围值

    可以查找某一个范围的数据
    explain select * from staffs where name > 'Mary';
    精确匹配某一列并范围匹配另外一列
    可以查询第一列的全部和第二列的部分
    explain select * from staffs where name = 'July' and age > 25;

    只访问索引的查询

    查询的时候只需要访问索引,不需要访问数据行,本质上就是覆盖索引
    explain select name,age,pos from staffs where name = 'July' and age = 25 and pos = 'dev';

    2. HASH索引相关

    哈希索引

    基于哈希表的实现,只有精确匹配索引所有列的查询才有效
    在mysql中,只有memory的存储引擎显式支持哈希索引
    哈希索引自身只需存储对应的hash值,所以索引的结构十分紧凑,这让哈希索引查找的速度非常快

    哈希索引的限制

    1、哈希索引只包含哈希值和行指针,而不存储字段值,索引不能使用索引中的值来避免读取行
    2、哈希索引数据并不是按照索引值顺序存储的,所以无法进行排序
    3、哈希索引不支持部分列匹配查找,哈希索引是使用索引列的全部内容来计算哈希值
    4、哈希索引支持等值比较查询,也不支持任何范围查询
    5、访问哈希索引的数据非常快,除非有很多哈希冲突,当出现哈希冲突的时候,存储引擎必须遍历链表中的所有行指针,逐行进行比较,直到找到所有符合条件的行
    6、哈希冲突比较多的话,维护的代价也会很高

    SQL案例

    当需要存储大量的URL,并且根据URL进行搜索查找,如果使用B+树,存储的内容就会很大
    select id from url where url=""
    也可以利用将url使用CRC32做哈希,可以使用以下查询方式:
    select id fom url where url="" and url_crc=CRC32("")
    此查询性能较高原因是使用体积很小的索引来完成查找

    3. 组合索引

    组合索引

    当包含多个列作为索引,需要注意的是正确的顺序依赖于该索引的查询,同时需要考虑如何更好的满足排序和分组的需要



    案例,建立组合索引a,b,c不同SQL语句使用索引情况


    4. 聚簇和非聚簇索引

    聚簇索引与非聚簇索引
    聚簇索引

    不是单独的索引类型,而是一种数据存储方式,指的是数据行跟相邻的键值紧凑的存储在一起

    优点
    1、可以把相关数据保存在一起
    2、数据访问更快,因为索引和数据保存在同一个树中
    3、使用覆盖索引扫描的查询可以直接使用页节点中的主键值

    缺点
    1、聚簇数据最大限度地提高了IO密集型应用的性能,如果数据全部在内存,那么聚簇索引就没有什么优势
    2、插入速度严重依赖于插入顺序,按照主键的顺序插入是最快的方式
    3、更新聚簇索引列的代价很高,因为会强制将每个被更新的行移动到新的位置
    4、基于聚簇索引的表在插入新行,或者主键被更新导致需要移动行的时候,可能面临页分裂的问题
    5、聚簇索引可能导致全表扫描变慢,尤其是行比较稀疏,或者由于页分裂导致数据存储不连续的时候

    非聚簇索引

    数据文件跟索引文件分开存放

    5.覆盖索引

    覆盖索引

    基本介绍
    1、如果一个索引包含所有需要查询的字段的值,我们称之为覆盖索引
    2、不是所有类型的索引都可以称为覆盖索引,覆盖索引必须要存储索引列的值
    3、不同的存储实现覆盖索引的方式不同,不是所有的存储引擎都支持覆盖索引,memory不支持覆盖索引

    优势
    1、索引条目通常远小于数据行大小,如果只需要读取索引,那么mysql就会极大的较少数据访问量
    2、因为索引是按照列值顺序存储的,所以对于IO密集型的范围查询会比随机从磁盘读取每一行数据的IO要少的多
    3、一些存储引擎如MYISAM在内存中只缓存索引,数据则依赖于操作系统来缓存,因此要访问数据需要一次系统调用,这可能会导致严重的性能问题
    4、由于INNODB的聚簇索引,覆盖索引对INNODB表特别有用

    案例演示

    1、当发起一个被索引覆盖的查询时,在explain的extra列可以看到using index的信息,此时就使用了覆盖索引


    2、在大多数存储引擎中,覆盖索引只能覆盖那些只访问索引中部分列的查询。不过,可以进一步的进行优化,可以使用innodb的二级索引来覆盖查询。

    例如:actor使用innodb存储引擎,并在last_name字段又二级索引,虽然该索引的列不包括主键actor_id,但也能够用于对actor_id做覆盖查询


    6. 常见优化处理落地方案

    常见优化方案

    1.当使用索引列进行查询的时候尽量不要使用表达式,把计算放到业务层而不是数据库层

    select actor_id from actor where actor_id=4;
    select actor_id from actor where actor_id+1=5;

    2.尽量使用主键查询,而不是其他索引,因此主键查询不会触发回表查询

    3.使用前缀索引

    有时候需要索引很长的字符串,这会让索引变的大且慢,通常情况下可以使用某个列开始的部分字符串,这样大大的节约索引空间,从而提高索引效率,但这会降低索引的选择性,索引的选择性是指不重复的索引值和数据表记录总数的比值,范围从1/#T到1之间。索引的选择性越高则查询效率越高,因为选择性更高的索引可以让mysql在查找的时候过滤掉更多的行。
    一般情况下某个列前缀的选择性也是足够高的,足以满足查询的性能,但是对应BLOB,TEXT,VARCHAR类型的列,必须要使用前缀索引,因为mysql不允许索引这些列的完整长度,使用该方法的诀窍在于要选择足够长的前缀以保证较高的选择性,通过又不能太长。
    案例演示:

    --创建数据表
    create table citydemo(city varchar(50) not null);
    insert into citydemo(city) select city from city;
    
    --重复执行5次下面的sql语句
    insert into citydemo(city) select city from citydemo;
    
    --更新城市表的名称
    update citydemo set city=(select city from city order by rand() limit 1);
    
    --查找最常见的城市列表,发现每个值都出现45-65次,
    select count(*) as cnt,city from citydemo group by city order by cnt desc limit 10;
    
    --查找最频繁出现的城市前缀,先从3个前缀字母开始,发现比原来出现的次数更多,可以分别截取多个字符查看城市出现的次数
    select count(*) as cnt,left(city,3) as pref from citydemo group by pref order by cnt desc limit 10;
    select count(*) as cnt,left(city,7) as pref from citydemo group by pref order by cnt desc limit 10;
    --此时前缀的选择性接近于完整列的选择性
    
    --还可以通过另外一种方式来计算完整列的选择性,可以看到当前缀长度到达7之后,再增加前缀长度,选择性提升的幅度已经很小了
    select count(distinct left(city,3))/count(*) as sel3,
    count(distinct left(city,4))/count(*) as sel4,
    count(distinct left(city,5))/count(*) as sel5,
    count(distinct left(city,6))/count(*) as sel6,
    count(distinct left(city,7))/count(*) as sel7,
    count(distinct left(city,8))/count(*) as sel8 
    from citydemo;
    
    --计算完成之后可以创建前缀索引
    alter table citydemo add key(city(7));
    
    --注意:前缀索引是一种能使索引更小更快的有效方法,但是也包含缺点:mysql无法使用前缀索引做order by 和 group by。 
    
    

    4.使用索引扫描来排序

    mysql有两种方式可以生成有序的结果:通过排序操作或者按索引顺序扫描,如果explain出来的type列的值为index,则说明mysql使用了索引扫描来做排序
    扫描索引本身是很快的,因为只需要从一条索引记录移动到紧接着的下一条记录。但如果索引不能覆盖查询所需的全部列,那么就不得不每扫描一条索引记录就得回表查询一次对应的行,这基本都是随机IO,因此按索引顺序读取数据的速度通常要比顺序地全表扫描慢
    mysql可以使用同一个索引即满足排序,又用于查找行,如果可能的话,设计索引时应该尽可能地同时满足这两种任务。
    只有当索引的列顺序和order by子句的顺序完全一致,并且所有列的排序方式都一样时,mysql才能够使用索引来对结果进行排序,如果查询需要关联多张表,则只有当orderby子句引用的字段全部为第一张表时,才能使用索引做排序。order by子句和查找型查询的限制是一样的,需要满足索引的最左前缀的要求,否则,mysql都需要执行顺序操作,而无法利用索引排序

    --sakila数据库中rental表在rental_date,inventory_id,customer_id上有rental_date的索引
    --使用rental_date索引为下面的查询做排序
    explain select rental_id,staff_id from rental where rental_date='2005-05-25' order by inventory_id,customer_id\G
    *************************** 1. row ***************************
               id: 1
      select_type: SIMPLE
            table: rental
       partitions: NULL
             type: ref
    possible_keys: rental_date
              key: rental_date
          key_len: 5
              ref: const
             rows: 1
         filtered: 100.00
            Extra: Using index condition
    1 row in set, 1 warning (0.00 sec)
    --order by子句不满足索引的最左前缀的要求,也可以用于查询排序,这是因为所以你的第一列被指定为一个常数
    
    --该查询为索引的第一列提供了常量条件,而使用第二列进行排序,将两个列组合在一起,就形成了索引的最左前缀
    explain select rental_id,staff_id from rental where rental_date='2005-05-25' order by inventory_id desc\G
    *************************** 1. row ***************************
               id: 1
      select_type: SIMPLE
            table: rental
       partitions: NULL
             type: ref
    possible_keys: rental_date
              key: rental_date
          key_len: 5
              ref: const
             rows: 1
         filtered: 100.00
            Extra: Using where
    1 row in set, 1 warning (0.00 sec)
    
    --下面的查询不会利用索引
    explain select rental_id,staff_id from rental where rental_date>'2005-05-25' order by rental_date,inventory_id\G
    *************************** 1. row ***************************
               id: 1
      select_type: SIMPLE
            table: rental
       partitions: NULL
             type: ALL
    possible_keys: rental_date
              key: NULL
          key_len: NULL
              ref: NULL
             rows: 16005
         filtered: 50.00
            Extra: Using where; Using filesort
    
    --该查询使用了两中不同的排序方向,但是索引列都是正序排序的
    explain select rental_id,staff_id from rental where rental_date>'2005-05-25' order by inventory_id desc,customer_id asc\G
    *************************** 1. row ***************************
               id: 1
      select_type: SIMPLE
            table: rental
       partitions: NULL
             type: ALL
    possible_keys: rental_date
              key: NULL
          key_len: NULL
              ref: NULL
             rows: 16005
         filtered: 50.00
            Extra: Using where; Using filesort
    1 row in set, 1 warning (0.00 sec)
    
    --该查询中引用了一个不再索引中的列
    explain select rental_id,staff_id from rental where rental_date>'2005-05-25' order by inventory_id,staff_id\G
    *************************** 1. row ***************************
               id: 1
      select_type: SIMPLE
            table: rental
       partitions: NULL
             type: ALL
    possible_keys: rental_date
              key: NULL
          key_len: NULL
              ref: NULL
             rows: 16005
         filtered: 50.00
            Extra: Using where; Using filesort
    1 row in set, 1 warning (0.00 sec)
    
    

    union all,in,or都能够使用索引,但是推荐使用in
    explain select * from actor where actor_id = 1 union all select * from actor where actor_id = 2;
    explain select * from actor where actor_id in (1,2);
    explain select * from actor where actor_id = 1 or actor_id =2;

    5.范围列可以用到索引

    范围条件是:<、>
    范围列可以用到索引,但是范围列后面的列无法用到索引,索引最多用于一个范围列
    强制类型转换会全表扫描

    create table user(id int,name varchar(10),phone varchar(11));
    alter table user add index idx_1(phone);

    不会触发索引

    explain select * from user where phone=13800001234;

    触发索引

    explain select * from user where phone='13800001234';

    常见总结使用规则

    1.更新十分频繁,数据区分度不高的字段上不宜建立索引
    2.更新会变更B+树,更新频繁的字段建议索引会大大降低数据库性能
    3.类似于性别这类区分不大的属性,建立索引是没有意义的,不能有效的过滤数据,
    4.一般区分度在80%以上的时候就可以建立索引,区分度可以使用 count(distinct(列名))/count(*) 来计算
    5.创建索引的列,不允许为null,可能会得到不符合预期的结果
    6.当需要进行表连接的时候,最好不要超过三张表,因为需要join的字段,数据类型必须一致
    7.能使用limit的时候尽量使用limit
    8.单表索引建议控制在5个以内
    9.单索引字段数不允许超过5个(组合索引)

    创建索引的时候应该避免以下错误概念

    1.索引越多越好
    2.过早优化,在不了解系统的情况下进行优化

    7.索引监控

    索引监控

    show status like 'Handler_read%';

    参数解释

    Handler_read_first:读取索引第一个条目的次数
    Handler_read_key:通过index获取数据的次数
    Handler_read_last:读取索引最后一个条目的次数
    Handler_read_next:通过索引读取下一条数据的次数
    Handler_read_prev:通过索引读取上一条数据的次数
    Handler_read_rnd:从固定位置读取数据的次数
    Handler_read_rnd_next:从数据节点读取下一条数据的次数

    8.索引优化实践案例

    SET FOREIGN_KEY_CHECKS=0;
    DROP TABLE IF EXISTS `itdragon_order_list`;
    CREATE TABLE `itdragon_order_list` (
      `id` bigint(11) NOT NULL AUTO_INCREMENT COMMENT '主键id,默认自增长',
      `transaction_id` varchar(150) DEFAULT NULL COMMENT '交易号',
      `gross` double DEFAULT NULL COMMENT '毛收入(RMB)',
      `net` double DEFAULT NULL COMMENT '净收入(RMB)',
      `stock_id` int(11) DEFAULT NULL COMMENT '发货仓库',
      `order_status` int(11) DEFAULT NULL COMMENT '订单状态',
      `descript` varchar(255) DEFAULT NULL COMMENT '客服备注',
      `finance_descript` varchar(255) DEFAULT NULL COMMENT '财务备注',
      `create_type` varchar(100) DEFAULT NULL COMMENT '创建类型',
      `order_level` int(11) DEFAULT NULL COMMENT '订单级别',
      `input_user` varchar(20) DEFAULT NULL COMMENT '录入人',
      `input_date` varchar(20) DEFAULT NULL COMMENT '录入时间',
      PRIMARY KEY (`id`)
    ) ENGINE=InnoDB AUTO_INCREMENT=10003 DEFAULT CHARSET=utf8;
    
    INSERT INTO itdragon_order_list VALUES ('10000', '81X97310V32236260E', '6.6', '6.13', '1', '10', 'ok', 'ok', 'auto', '1', 'itdragon', '2017-08-28 17:01:49');
    INSERT INTO itdragon_order_list VALUES ('10001', '61525478BB371361Q', '18.88', '18.79', '1', '10', 'ok', 'ok', 'auto', '1', 'itdragon', '2017-08-18 17:01:50');
    INSERT INTO itdragon_order_list VALUES ('10002', '5RT64180WE555861V', '20.18', '20.17', '1', '10', 'ok', 'ok', 'auto', '1', 'itdragon', '2017-09-08 17:01:49');
    
    

    案例一

    select * from itdragon_order_list where transaction_id = "81X97310V32236260E";
    --通过查看执行计划发现type=all,需要进行全表扫描
    explain select * from itdragon_order_list where transaction_id = "81X97310V32236260E";
    
    --优化一、为transaction_id创建唯一索引
     create unique index idx_order_transaID on itdragon_order_list (transaction_id);
    --当创建索引之后,唯一索引对应的type是const,通过索引一次就可以找到结果,普通索引对应的type是ref,表示非唯一性索引赛秒,找到值还要进行扫描,直到将索引文件扫描完为止,显而易见,const的性能要高于ref
     explain select * from itdragon_order_list where transaction_id = "81X97310V32236260E";
     
     --优化二、使用覆盖索引,查询的结果变成 transaction_id,当extra出现using index,表示使用了覆盖索引
     explain select transaction_id from itdragon_order_list where transaction_id = "81X97310V32236260E";
    
    

    案例二

    --创建复合索引
    create index idx_order_levelDate on itdragon_order_list (order_level,input_date);
    
    --创建索引之后发现跟没有创建索引一样,都是全表扫描,都是文件排序
    explain select * from itdragon_order_list order by order_level,input_date;
    
    --可以使用force index强制指定索引
    explain select * from itdragon_order_list force index(idx_order_levelDate) order by order_level,input_date;
    --其实给订单排序意义不大,给订单级别添加索引意义也不大,因此可以先确定order_level的值,然后再给input_date排序
    explain select * from itdragon_order_list where order_level=3 order by input_date;
    
    

    相关文章

      网友评论

          本文标题:Mysql索引优化 Mysql通过索引提升查询效率(第二棒)

          本文链接:https://www.haomeiwen.com/subject/qkcdlrtx.html