美文网首页
tensorflow制作自己的VOC2018数据集

tensorflow制作自己的VOC2018数据集

作者: yanghedada | 来源:发表于2018-10-04 14:49 被阅读232次

    下载图片

    从这里的标签制作文件夹下拿到,jpg图片,xml标签数据,l
    链接:链接:https://pan.baidu.com/s/11Ot-X4-zvWgNnF2TSltUDw
    提取码:qfvx
    由于先前的数据(人脸识别)文件名字中含有空格,在进行xml解析式用的是str().split(‘ ’)切分所以那批数据僵硬了。在VOC2007截取了50张图片进行这个测试,以便在对超大型数据进行制作record文件会有点帮助。从jpg-->csv-->record的路有点长,所以改为jpg-->record,可能会快一点吧。

    首先模仿VOC2007创建几个文件夹

    --my_data
          |--Annotations ——xml标注文件
          |--ImageSets ——类别标签
              |--Main  ———train.txt,等文件
          |--JPEGImages ——jpg图像文件
              
    

    1.把图片copy到JPEGImages 目录
    2.把xml文件copy到Annotations目录
    3.把 lale_map.pbtxt 放到当前目录
    如下:


    my_data目录

    creat_name.py如下,这是生成train.txt,val.txt文件的程序。
    修改一下目录和训练集比例(=0.5两个数据集是一样大),就生成可以train.txt,val.txt,test.txt文件。

    #!/usr/bin/env python
    import os
    import random
    import os
    trainval_percent = 1 # trainval数据集占所有数据的比例
    train_percent = 0.5 # train数据集占trainval数据的比例
    xmlfilepath = 'Annotations'
    txtsavepath = 'ImageSets\Main'
    total_xml = os.listdir(xmlfilepath)
    num=len(total_xml)
    list=range(num)
    tv=int(num*trainval_percent)
    tr=int(tv*train_percent)
    trainval= random.sample(list,tv)
    train=random.sample(trainval,tr)
    ftrainval = open('ImageSets/Main/trainval.txt', 'w')
    ftest = open('ImageSets/Main/test.txt', 'w')
    ftrain = open('ImageSets/Main/train.txt', 'w')
    fval = open('ImageSets/Main/val.txt', 'w')
    for i in list:
        name=total_xml[i][:-4]+'\n'
        if i in trainval:
            ftrainval.write(name)
            if i in train:
                ftrain.write(name)
            else:
                fval.write(name)
        else:
            ftest.write(name)
    ftrainval.close()
    ftrain.close()
    fval.close()
    ftest .close()
    

    制作record文件

    这一步需要借助object_detetion的API
    从object_detection\dataset_tools下把create_pascal_tf_record.py文件复制到最外层目录文件夹下命名为creat_my_data_tf_record.py。如下:


    creat_my_data_tf_record.py

    我的数据在这里:


    my_data
    修改下代码,去掉了Year,变成my_data:
    #creat_my_data_tf_record.py
    import hashlib
    import io
    import logging
    import os
    
    from lxml import etree
    import PIL.Image
    import tensorflow as tf
    
    from tensorflow.models.research.object_detection.utils import dataset_util
    from tensorflow.models.research.object_detection.utils import label_map_util
    #from tensorflow.models.research.object_detection.utils import label_map_util
    #
    #from tensorflow.models.research.object_detection.utils import visualization_utils as vis_util
    
    
    flags = tf.app.flags
    flags.DEFINE_string('data_dir', '', 'Root directory to raw PASCAL VOC dataset.')
    flags.DEFINE_string('set', 'train', 'Convert training set, validation set or '
                        'merged set.')
    flags.DEFINE_string('annotations_dir', 'Annotations',
                        '(Relative) path to annotations directory.')
    flags.DEFINE_string('output_path', '', 'Path to output TFRecord')
    flags.DEFINE_string('label_map_path', 'VOCdevkit/pascal_label_map.pbtxt',
                        'Path to label map proto')
    flags.DEFINE_boolean('ignore_difficult_instances', False, 'Whether to ignore '
                         'difficult instances')
    FLAGS = flags.FLAGS
    
    SETS = ['train', 'val', 'trainval', 'test']
    
    
    def dict_to_tf_example(data,
                           dataset_directory,
                           label_map_dict,
                           ignore_difficult_instances=False,
                           image_subdirectory='JPEGImages'):
      """Convert XML derived dict to tf.Example proto.
    
      Notice that this function normalizes the bounding box coordinates provided
      by the raw data.
    
      Args:
        data: dict holding PASCAL XML fields for a single image (obtained by
          running dataset_util.recursive_parse_xml_to_dict)
        dataset_directory: Path to root directory holding PASCAL dataset
        label_map_dict: A map from string label names to integers ids.
        ignore_difficult_instances: Whether to skip difficult instances in the
          dataset  (default: False).
        image_subdirectory: String specifying subdirectory within the
          PASCAL dataset directory holding the actual image data.
    
      Returns:
        example: The converted tf.Example.
    
      Raises:
        ValueError: if the image pointed to by data['filename'] is not a valid JPEG
      """
      img_path = os.path.join(data['folder'], image_subdirectory, data['filename'])
      full_path = os.path.join(dataset_directory, img_path)
      with tf.gfile.GFile(full_path, 'rb') as fid:
        encoded_jpg = fid.read()
      encoded_jpg_io = io.BytesIO(encoded_jpg)
      image = PIL.Image.open(encoded_jpg_io)
      if image.format != 'JPEG':
        raise ValueError('Image format not JPEG')
      key = hashlib.sha256(encoded_jpg).hexdigest()
    
      width = int(data['size']['width'])
      height = int(data['size']['height'])
    
      xmin = []
      ymin = []
      xmax = []
      ymax = []
      classes = []
      classes_text = []
      truncated = []
      poses = []
      difficult_obj = []
      for obj in data['object']:
        difficult = bool(int(obj['difficult']))
        if ignore_difficult_instances and difficult:
          continue
    
        difficult_obj.append(int(difficult))
    
        xmin.append(float(obj['bndbox']['xmin']) / width)
        ymin.append(float(obj['bndbox']['ymin']) / height)
        xmax.append(float(obj['bndbox']['xmax']) / width)
        ymax.append(float(obj['bndbox']['ymax']) / height)
        classes_text.append(obj['name'].encode('utf8'))
        classes.append(label_map_dict[obj['name']])
        truncated.append(int(obj['truncated']))
        poses.append(obj['pose'].encode('utf8'))
    
      example = tf.train.Example(features=tf.train.Features(feature={
          'image/height': dataset_util.int64_feature(height),
          'image/width': dataset_util.int64_feature(width),
          'image/filename': dataset_util.bytes_feature(
              data['filename'].encode('utf8')),
          'image/source_id': dataset_util.bytes_feature(
              data['filename'].encode('utf8')),
          'image/key/sha256': dataset_util.bytes_feature(key.encode('utf8')),
          'image/encoded': dataset_util.bytes_feature(encoded_jpg),
          'image/format': dataset_util.bytes_feature('jpeg'.encode('utf8')),
          'image/object/bbox/xmin': dataset_util.float_list_feature(xmin),
          'image/object/bbox/xmax': dataset_util.float_list_feature(xmax),
          'image/object/bbox/ymin': dataset_util.float_list_feature(ymin),
          'image/object/bbox/ymax': dataset_util.float_list_feature(ymax),
          'image/object/class/text': dataset_util.bytes_list_feature(classes_text),
          'image/object/class/label': dataset_util.int64_list_feature(classes),
          'image/object/difficult': dataset_util.int64_list_feature(difficult_obj),
          'image/object/truncated': dataset_util.int64_list_feature(truncated),
          'image/object/view': dataset_util.bytes_list_feature(poses),
      }))
      return example
    
    
    def main(_):
      if FLAGS.set not in SETS:
        raise ValueError('set must be in : {}'.format(SETS))
    
      data_dir = FLAGS.data_dir
      datasets = ['my_data']
    
      writer = tf.python_io.TFRecordWriter(FLAGS.output_path)
    
      label_map_dict = label_map_util.get_label_map_dict(FLAGS.label_map_path)
    
      for dataset in datasets:
        logging.info('Reading from PASCAL %s dataset.', dataset)
        examples_path = os.path.join(data_dir, dataset, 'ImageSets', 'Main/' + FLAGS.set + '.txt')
        annotations_dir = os.path.join(data_dir, dataset, FLAGS.annotations_dir)
        examples_list = dataset_util.read_examples_list(examples_path)
        for idx, example in enumerate(examples_list):
          if idx % 100 == 0:
            logging.info('On image %d of %d', idx, len(examples_list))
          path = os.path.join(annotations_dir, example + '.xml')
          with tf.gfile.GFile(path, 'r') as fid:
            xml_str = fid.read()
          xml = etree.fromstring(xml_str)
          data = dataset_util.recursive_parse_xml_to_dict(xml)['annotation']
    
          tf_example = dict_to_tf_example(data, FLAGS.data_dir, label_map_dict,
                                          FLAGS.ignore_difficult_instances)
          writer.write(tf_example.SerializeToString())
    
      writer.close()
    
    
    if __name__ == '__main__':
      tf.app.run()
    
    

    运行create_my_data_tf_record.py

    python create_my_data_tf_record.py --data_dir=VOCdevkit/  --set=train --output_path=VOCdevkit/my_train.record  --label_map_path ./VOCdevkit/data/label_map.pbtxt
    
    python create_my_data_tf_record.py --data_dir=VOCdevkit/  --set=val --output_path=VOCdevkit/my_val.record  --label_map_path ./VOCdevkit/data/label_map.pbtxt
    
    

    如下图:


    得到record

    参考一下博客:
    创建自己的VOC2007数据集
    # 使用谷歌Object Detection API进行目标检测、训练新的模型(使用VOC 2012数据集)

    相关文章

      网友评论

          本文标题:tensorflow制作自己的VOC2018数据集

          本文链接:https://www.haomeiwen.com/subject/qksxaftx.html